Radio Shack warrants for a period of 90 days from the date of delivery to
that the p hard described herein shall be free from defects
in material and workmanship under normal use and service. This warranty shall be
void if the computer case or cabinet is opened or if the unit is altered or modified.
During this period, if a defect should occur, the product must be retumed to a
Radio Shack store or dealer for repair. Customer’s sole and exclusive remedy in
the event of defect is expressly limited to the correction of the defect by adjust-
ment, repair or replacement at Radio Shack’s election and sole expense, except
there shall be no obligation to replace or repair items which by their nature are
dable. No or other affirmation of fact, including but not
limited to statements regarding capacity, suitability for use, or performance of the
equipment, shall be or be deemed to be a warranty or representation by Radio
Shack, for any purpose, nor give rise to any liability or obligation of Radio Shack
whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, THERE ARE
NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE AND IN NO EVENT SHALL
RADIO SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDI-
RECT, SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARIS-
ING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
‘“AS IS” BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by P quip orp sold by
Radio Shack, including but not limited to any interruption of service, loss of
busi or ici y profits or ial d. Iting from the use
or operation of such P or p p
NOTE: Good data processing procedure dictates that the user test the program,
run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of ion of the or are satisf:

©Copyright 1978, by Radio Shack, A Division of Tandy Corporation, Ft. Worth, Texas 76102

This Reference Manual and You

We've prepared this Ref M [with the

that you — the user — already have considerable expenence
with programming in BASIC. Our LEVEL I User’s Manual
was written for the total beginner ~ and has been greeted
with wide acclaim. We freely admit this Manual

has not been written from the same perspective,

But by the time you recognize a desire (or need) for a
LEVEL II BASIC, we expect that you've gone through our
LEVEL I Manual and have a solid foundation in
programming.

If this is your first experi with p i
micro-computers, we very strongly urge you to spend time
with a LEVEL I TRS-80 first — and the Manual we
prepared for it.

If you've had experience with other forms of the BASIC
{anguage (other micro-computers or time share systems) then
you should be ready for our Reference Manual for

LEVEL IL

LEVEL Il is a far more powerful version of BASIC than was
LEVEL L If you have been working with LEVEL I for
some time, be prepared for some pleasant surprises — and
some differences that might throw you for awhile (for
example, LEVEL 1 programs won’t run as-is on a LEVEL I1
machine. .. you'll have to modify them). This Manual is a
complete reference guide — it is not intended to be a
complete step-by-step training manual or an applications
book (that will come later).

.If you have some suggestions. .. criticisms... additions...
‘concerning this Manual — we’d be glad to hear from you.

Y Sy T G 0 s AT R A MY < 71 P s s 5,

FIRST EDITION — 1978
All rights reserved. Reproduction ot use, without

cf
tent, in any manner, is prohibited. No patent
liability is assumed with nqnetlot-hnwo“ho
inf

every
caution has been taken in the preparation of lhnl
book, the assumes no

for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the
information contained herein.

© Copyright 1973 R-dlo Shack,
A Division of Ta: tion,
Fort Worth, Tuu 7410 USA.

Printed in the United States of America

CONTENTS

Setting Up the System teessecscedrreencaraseasaiisestanans i-iii
Tips on Loading Cassette Programs cesesecesnscsasconsasecssnsscensen iv
1/General Informationcccvenueeannaas Cenesisinsescssiastananiaas 18
2/Commandsoovvennenrscarernonanscanaas ceeersicreneienanans vees 2/1-6
3/Input-Output StateMents «v.vuieeraseeassesaescsessecsassssassscancne 3/1-11
4/Program Statements .u.oeueeeeecenseeceerasccssccscancasansssscsnans 4/1-17

5/Strings . eeeieniininnennnnnnanes teeeereenes tetseenccenataasessanane 5/1-9
[IZN o7 S ceecsecscesesrccsssecsences treeeressiseseasnenne 6/1-6
7/Arithmetic Functions cettecrceretnstnscentnessanannnns ceenn 714
8/Special Features.....ocveenerencacnannnnns teesessenessanes vereneases 8/1-12
9/EQItiNG «ueunreneinireiiruieneisesiseressansascasessassssncsnsnnnans 9/1-6
10/Expansion INterfaceccuvevnecrecncosscssccscecscscnsananansanas 10/1-4
11/Saving Time and Space.....cccveviereennnees tesesisieesienanans 12
Appendices

A/LEVEL II SUMMACY «1eveveeernetncenccsansanssscsennsasceasasansss A/1-16
B/Error Codes......c.covuivnienianennncnas teeveencesesasensescsrsrcns B/1-3

C/Control, ASCII and Graphics Codes
D/LEVEL H TRS-80 Memory Map

E/Video Display Worksheet

F/Derived FUnctionsc.ceceeeeeeeicnnsaceccassssnsanenn

Setting Up The System

Carefully unpack the system. Remove all packing material, Be sure
you locate all cables, papers, tapes, etc. Save the packing material in
case you need to transport the system.

Connecting the Video Display and Keyboard:

1.

Connect the power cord from the Video Display to a source of

120 voits, 60 Hz AC power. Note that one prong of the AC

plug is wider than the other — the wide prong should go into the

widest slot of the AC socket.

NOTE: If you use an AC extension cord, you may not be able
to plug the Display's power cord in. Do not attempt to
force this wide prong into the extension cord; use a
wall outlet if at all possible.

Connect the power cord of the Power Supply to a source of 120

volts, 60 Hz AC power.

. Connect the gray cable from the front of the Video Monitor to

the VIDEO jack on the back of the Keyboard Assembly. Take

care to line up the pins correctly (the plug fits only one way).

NOTE: Before the next step, be sure the POWER switch on the
back of the Keyboard is off (button out).

. Connect the gray cable from the Power Supply to the POWER

jack on the back of the Keyboard Assembly. Again, take care to
mate the connection correctly.

Connecting The Cassette Recorder:

NOTE: You do not need to connect the Cassette Recorder unless
you plan to record programs or to load taped programs into the
TRS-80.

1.
2.

Connect the CTR-41 to a source of 120 voit AC power. (Batteries
are not recommended for using Recorder with TRS-80.)

Connect the short cable (DIN plug on one end and 3 plugs on the
other) to the TAPE jack on the back of the Keyboard Assembly.
Be sure you get the plug to mate correctly.

. The 3 plugs on the other end of this cable are for connecting to

the CTR41.

A. Connect the black plugintot

AR jack on the sid
output sizmal
ng Tape progra;

CTR+41. This con; icn pro
the CTR-{ tothe TRS-80 (for !
the TRS-80).

B. Connect the larger gray plug into the AUX jack on the
CTR-41. This connection provides the ording signal to
record programs from the TRS-30 onto the CTR-+1"s tape.
Also, plug the Dummy Plug (provided with the CTR-41)
into the MIC jack (this disconnects the built-in Mic so it
won't pick up sounds while you are loading tapes).

NOTE: Be sure you always use the Dummy Plug when saving

programs on tape (Recording).

_'...‘.__3 Dummy Plug
SmTogy

C. Connect the smaller gray plug into the REM jack on the
CTR-41. This allows the TRS-80 to automatically control
the CTR-41's motor (turn tape motion on and off for
recording and playing tapes).

5 into

Notes On Using The Recorder

There are a number of things you should be aware of as you use the

Cassette Tape System: X

1. To play a tape (load a taped program into the TRS-30), you must
have the CTR-41's Volume control set to middle to upper levels,
(approximately 4 to 6). Then press the CTR-41's PLAY key and
then type CLOAD on the TRS-80 and ENI{A this command.
This will start the tape motion. An * will appear on the top line
of the Monitor; a second * w:ll blink, indicating the program is
loading. When loading is done, the TRS-80 will automatically
turn the CTR-41 off and flash READY on the screen. You are
then ready to RUN the program (type in RUN and hit GG)

2. Torecord a program from the TRS-80, press the CTR-41"s
RECORD and PLAY keys simultaneously. Then type CSAVE
followed by a one-letter “file-name™ in quotes and
this command. When the program has been recorded the TRS-80
will automatically turn the CTR-41 off and Jisplay READY on
the screen. Now you have your program on tape (it still is in the
TRS-80 also). Many computer users make a second or even a
third recording of the tape, just to be sure they have a good
recording.

3. Use the CTR-41"s Tape Counter to aid you in locating programs
on tapes.

4. For best results, use Radio Shack’s special 10 mvnux. per side
Computer Tape Cassettes (especially de
puter programs). If you use standard audio tape casse
sure to use top quality, such as Realistic SUPERTAPE. Keep in
mind that audio cassettes have lead-ins on both ends (blue non-
magnetic mylar material) — you can not record on the leader

[e

portion of the tape. Advance the tape past the leader before
recording a program.

5. When you are not going to use a CTR-1 for loading or recording
programs, do not leave RECORD or PLAY keys down (press
STOP).

6. To REWIND or FAST-Forward a cassette, place Recorder in
REWIND or FAST-Forward, then type CLOAD and hit BT
When tape has reached the desired position. push the Reset
button inside the Expansion Port access door (rear left of
TRS-80). (Instead of using this CLOAD, Reset sequence, you
could remove the REMote plug from its jack: however, repeated
insertion/removal tends to wear out any plug and is not
recommended.)

7. If you want to save a taped program permanently, break off the
erase protect tab on the cassette (see CTR41 Manual).

8. Do not expose recorded tapes to magnetic fields. Avoid placing
your tapes near the Power Supply.

9. To check if a tape has a program recorded on it, you can
disconnect the plug from the EAR jack (also disconnect the
REM plug so you can control the CTR-41 with the keys) and
Play the tape; you'll hear the program material from the speaker.

. For the best results when using a Recorder with the Computer, you
should keep the Recorder’s heads and tape handling mechanism
very clean. A new Recorder should be cleaned before it is used
the first time, and cleaned again after every four hours’ use. In
addition, the tape heads should be demagnetized periodically.

)

A complete line of recorder accessories (cleaning solution, cotton-
tipped swabs, demagnetizer-cassettes, etc.) is available at your local
Radio Shack store.

Special Note:

Before attempting to load a program from tape into the Computer,
be sure the cassette is rewound to a blank portion of the tape pre-
ceding the program. If you try to start the load in the middle of a
preceding program, you probably will get the Computer “hung up”
(in which case you'll have to press Resct and start over).

The same rule applies when you’re using the CLOAD? command to
compare a taped program with one stored in the Computer.

Tips On Loading
Cassette Programs

There are many factors which will affect the performance of a cassette
system. The most significant one is volume. Too low a volume may
cause some of the information to be missed. Too high a volume may
cause distortion and result in the transfer of background noise as
valid information. Both of these situations will cause errors.

The recommended volume settings* for loading from cassette tape are:

PRE-RECORDED

USER GENERATED RADIO SHACK
LEVEL I 4-6 51/2-61/2
LEVELI 7-8 71/2-81/2

If the asterisks do not appear during a load, try lowering the volume.
It is also a good idea to unplug the EARphone (black) plug and listen
for the start of the program. This will tell you exactly where the
program starts. [f the asterisks appear, but one is not flashing, try
increasing the volume setting. If higher volume setting doesn’t solve
the problem, clean the head.

Handling Load-Errors

There is a very rare case in which only a minor error may occur in
loading a program and no error message will be printed. The best way
to check for this, is to List the program. If the program looks OK,
use the CLOAD? command to compare the tape version with the one
you loaded. If they are not exactly the same, a “*BAD" message will
be printed. Such a case normally can be remedied with a minor
adjustment in the volume setting (usually a slight increase).

*Numbers refer to markings on the Radio Shack CTR-41 Recorder, ,
which run from 0 to 10 (full volume). For different models of
R d b ded may not be appropriate. Do a

little experimenting.

| vaeremamne Z IIITOE

1/ General Information

This chapter will provide you with an overview of
LEVEL II BASIC — what some of its special features
are, how it differs from LEVEL I, and generally,
what you need to get going. In addition, there's a
short glossary at the end of the chapter.

Power-Up

Connect Keyboard-Computer, Video Display and Power Supply as
explained in the previous section. Plug Video Display and Power
Supply into 120-volt AC outlets. Press POWER buttons on Video
Display and at the back of the Keyboard. Give the video tube a few
seconds to warm up.

MEMORY SIZE? — will appear on the screen. This is your chance
to protect a segment of memory so that machine-language programs
may be loaded, using a special command, SYSTEM. For normal
applications, you won't want to protect any memory, so just press
the key without lyp|n| in any numbers. This will allow
you to write BASIC programs using the full memory capacity of
your Computer (for 4K LEVEL Il machines, that’s 3284 bytes; for
16K LEVEL Il machines, it's 15,572 bytes).

NOTE: In general, whenever you have typed something in via the
keyboard and you want the Computer to ““act™ on your input, you
must first hit the key just as you did with the Level |
TRS-80. There are ways to have the Computer respond as soon as
you hit a key (without XX), but these will be covered later.

RADIO SHACK LEVEL II BASIC
READY
>

will appear on the screen. You are now ready to use LEVEL Il
BASIC.

Operating Modes

There are four operating modes: Command, Execute, Edit and
Monitor. Command and Execute Modes are just like LEVEL[

BASIC. In the C d Mode. the C to
commands as soon as they are entered. This is the level you use to
write programs and perform i directly (**

mode” of LEVEL [). Whenever the >_ appears on the Display,
you're in the Command Mode.

== e T T

1

The Exegute Mogde is usually entered by typing RUN: this causes
BASIC programs to be executed. Unlike LEVEL [, LEVEL Il
initializes all numeric variables to zero and setgall strings to null
when you enter the command RUN.

The Edit Mode is a real time-saving feature of LEVEL IL.

It allows you to edit (alter, add to or delet2) the contents of
program lines. Instead of retyping an entire program line, you
change just the part that needs changing.

NOTE: Whenever Computer encounters a Syntax error during
execution, it will go into Edit Mode for that line. To get out of Edit
Mode, type “Q” (without quotes).

The Monitor Mode lets you load machine language “object files”
into memory. These routines or data can then be m.cz:ssed by your
BASIC programs, or they may be pletely ind

progi

Special Function Keys

LEVEL I BASIC offers the same special function keys as LEVEL 1 —
plus a few extras. The function of the key depends on what mode the
Computer is in.

C d Mode:
ENTER Effects a carriage return; Computer *“‘looks at” line

just typed in and acts accordingly. If line just typed in
has no line number, Computer will interpret and
execute the statements contained in the line. If Line
has a line number, Computer stores the line in program
memory.
Backspaces the cursor and deletes last character typed
- n.

SHIFT -e Deletes the line you are typing in, and returns cursor

to beginning of logical line.

\l Linefeed; moves cursor down to next physical line on
the Display.
: S BASIC ined on the same

logical line, to allow muiti-statement lines.
E.g., PRINT “FIRST STATEMENT":PRINT “SECOND STATEMENT"

- Moves cursor over to the next tab stop. Tab stops are
at positions 0, 8, 16, 24, 32, 40, 48 and 56.

SHIFT » Converts display to 32 character-per-line format.

CLEAR Clears the Display and returns it to 64 charactar-per-
line format.

Execute Mode:

SHIFT @ Puiuse; stops program execution. Hitting any key
C: S on to be resumed. Hitting SHIFT @ also
Display during a LIST so you can examine

pr

BREAK Slops execution. Resume execution by typing CONT.

[ENTER] When Computer is awaiting input from the keyboard,
[ESTEE] causes Computer to “look at™ what you've
typed in.

For Edit Mode special function keys, see Chapter 9.

Variable Names

Variable names must begin with a letter (A-Z) and may be followea
by another letter or digit (0-9). So the following are al} valid and
distinct variable names:

A A2 AA AZ G GP M MU 2z 21
Variable names may be longer than two characters, but only the first
two characters will be used by the computer to distinguish between
variables. For example “SUM™, “SUB" and “SU"" will be treated as
one and the same variable by LEVEL II BASIC.

As you can imagine, this gives you plenty of variable names to use in
LEVEL Il (in the neighborhood of 900). However, you cannot use
variable names which contain words with special meaning in the
BASIC language. For example, “XON" cannot be used as a variable
rame. sin yword “ON™. The complete
list of “reserved cannot be used in variat
appears in Appendix A of this Manual.

Variable Types

. single pre-

cision, double pre
are used to store

ralues with various degrees of precision;
equences) of Juraugrs — letters, blanks,
numbers Jnk‘ spec ul symbels - up to cterslonz. LEVEL L
only allowed two
ailows you to use any varianle name for strings, >|""~\, hv adm'\g the
string declaration character, $, to the variable name. There are
declaration charactzrs for the other variable types, too: Here'sa
complete listing:

Declaration
Variable Type - “Character Examiples Typical values stored”
integer (whole % AZB5E -30,123, 3, 5001
numbers greater
than - 32769 and
less than +32768

single precision ! ALAALZI 1, -50,.123436,
(6 significant 353421
figures)

double precision » A®.2Z#,C»
(16 significant

figures) 1.600000003963001

double precision D “A#=12345678901D+12" 1.2345678901 x 10'7
with scientific no-

tation (for entering

constants or duning

output of large or

small numbers)

string (up to] AlS,GTS, HIS “JOHN Q. DOE"
255 characters)”

The same variable name may be used for different variable types,
and the Computer will still keep them distinct, because of the type
declaration character: For example, AS, A%, A!, A= are distinct
variable names.

Variables without declaration characters are assumed to be single-

p ; this ption can be ch d with DEFine statcments
(Chapter 4).

Arrays

Any valid variable name can be used to name an array in LEVEL {1
BASIC; and arrays are not limited to one dimension. The DIMension
statement is used to define arrays at the beginning of a program.
Depending on the variable type used, an array may contain strings,
integers, double precision values, etc, A whole chapter of this Manual
is devoted to arrays:
Examples: AS (X,Y.Z) would be a three-dimensional array
containing string values
G3 (LJ) would be a two-dimensional array containing
numerical single-precision values
G#(I) would be a one dimensional array of double
precision values.

Arithmetic Operators
LEVEL H uses the same arithmetic operators as LEVEL I:
+ (addition), — (subtraction), * (multiplication) and / (division).
And there's a new, very handy operator: § (exponentiation:
243=38).
For example, to compute 6°2'% . PRINT 6+2 4 (1/3)
NOTE: Some TRS-80's generate a | character instead of the

4 arrow.

Relational Operators

These are the same as LEVEL 1.
< (less than) > (greater than) =(equal to)
<>(not equal to) <=(less than or equal to) >=(greater than or equal to)
These operators are useful both for IF . . . THEN statements and for

logical arithmetic.
Example: 100 1F €<=0 THEN C=127
Logical Operators

In LEVEL I BASIC, * and + were used to represent the logical
operators AND and OR. In LEVEL I1, we don’t use symbols, we
use AND and OR directly. We also have another operator, NOT.
Examples:

50 IF Q=13 AND R2 = 0 THEN PRINY "READY"

100 @ = (G1<0) AND (G2<L) Q= -1 if both expressions are
True; otherwise Q=0

200 Q= (G1<0) OR (G2<L) Q = —1if either expression is
True; otherwise Q=0

300 Q = NOT{C>3) Q= —1 if the expression is False;
Q=0if it is True

400 IF NOT (P AND Q) THEN PRINT P AND Q ARE NOT BOTH EQUAL TO —1"

500 IF NOT (P OR Q) THEN PRINT "NEITHER P NOR Q EQUALS —1"

String Operators

Strings may be compared and concatenated (“‘strung together™) in
LEVEL Il A whole chapter of this Manual is devoted to string
manipulations,

Symbol Meaning Example

< precedes alphabetically TAY < B”

> foilows alphabetically TJOE™ > “JIM™
= equals 88 = "WIN"

<> does not equal IF AS<>BS THEN PRINT AS
<= precedes or equals IF AS<=AZS$ PRINT "DONE"
>= follows or equals IF L1$>="SMITH" PRINT L1$
+ concatenate the two AS = CSHCIS
strings AS ="TRS—" + 80"

15

Order of Operations
Operations in th
then evaluation proc
same nesting level are performed ACCUTJ

ng2 to the following hicrarchy
Exponentiation: A 4B

Negation: -X

*, | deft to nght)

+, — (left to right)

<, >, =, <=,> =, <> (et to right)

Intrinsic Functions

Most of the subroutines in the LEVEL I manual are built-in to
LEVEL II. They are faster, more accurate, and much easier to use.

Graphics

Level Il has the same SET, RESET and POINT functions as LEVEL
I for turning graphics blocks on and off and determining whether an
individual block is on or off. (There are a few differences — see
Chapter 8.)

A big feature of LEVEL I is the selectable display - either 64
characters per line or 32 dumdm perline (¢'D. When the machine

is turned on it is in the 64 ¢/l mod SHIFT
to change to 32 ¢/L Display wiil return to o4 o'l whenever a cLs or
NEW is executed or CLEAR key is hit. You can also shift to 32 ¢/

by executing a PRINT CHRS (23). Morz on

Error Messages

LEVEL I pointed out errors by
along with the o
at the point of
info r
Codes (see Appendix). The offendir
out, butit's up to you to locats t

WHAT?0r SORRY
with aaquestion mark insertad

ending program !
w. LEVELD I 2

Mmation 1hout what type

e e AR

Abbreviations

Very few abbreviations are allowed in LEVEL II. Ex-LEVEL I users
will have to forget about R, L., P., etc. Although LEVEL Il

doesn’t allow these short-forms, it stores the programs more
efficiently than LEVEL I did, so you can still pack a lot of program
into a small amount of memory space.

The abbreviations are:
? for PRINT, and
* for:REM

. for last line entered, listed, edited, or in which an error occurred.

Keyboard Rollover

With the LEVEL I TRS-80 (and many other computers) you have
to release one key before the Computer will allow entry of another
key. LEVEL Il lets you hit the second key before you have
released the first key. This is great for you touch typists.

T

Glossary for LEVEL 11 BASIC

address a value specifying the location of a byte in memory;
decimal values are used in LEVEL I

slphanumerics the set of letters A-Z, the numerals 0-9, and various
punctuation marks and special characters

argument the value which is supplied to a function and then
operated on to derive a result

array an arrangerhent of elements in one or more dnmensxons

ASCH American Standard Code for Infc
LEVEL Il BASIC, decimal values are used to specify ASCI] codel

assembler 2 program that converts a symbolic-language program into
a machine-language program

BASIC Beginners All-purpose Symbolic Iastruction Code

baud signaling speed in bits per second; LEVEL II's cassette interface
operates at 500 baud (500 bits per second)

binary number a number represented in the base-two number system
using only binary digits “0” and “1

bit binary-digit, the smallest memory cell in a computer

byte the smallest memory unit that can be addressed in BASIC,
consisting of 8 consecutive bits

decimal number a number represented in the base-ten number system
using the digits 0-9

expression a combination of one or more operations, constants and
variables

file an organized collection of related data

he: number a number repruemed in the base-16 number
system using the digits 0-9 plus A, B, C, D

intrinsic function a function (us: uzlly a comphczled function) that
may be “built-in™ to the Computer’s ROM and may be used
directly in a BASIC statement

logical expresion an expressmn which is elther True or False:
1!True —~1lis d; if False, O is

the 1 used directly by the Computer,

written as binary-coded instructions

port one of 256 channels through which data can be input to or
output from the Computer

RAM Random Access Memory; memory available to the user for
writing programs and storing data

ROM Read Only Memory; memory which is permanently pro-
grammed and may be read but not written into; LEVEL 11 BASIC
is stored in ROM

routine a sequence of instructions to carry out a certain function

statement a completc mstrucnon in BASIC

string a of al| ic ch ranging in length from
zero (the “null” string) to 255

subroutine a sequence of instructions for performing a desired
function; may be accessed many times from various points in a
program

variable a quantity that can take on any of a given set of values

variable name the label by which a given variable is addressed

18

- B s

2/Commands

Whenever a prompt > is displayed. your Computer

is in the Command Mode. You can type in a command,
it, and thie Computer will respond immediately.

This chapter describes the commands you'll use to

control the Computer — to change modes, begin input

and output procedures, alter program memory, etc.

All of these commands — except CONT — may also be

used e your program as statements. In some cases

this is useful; other times it is just for very specialized

applications.

The commands descrited in this chapter are:

ALTO CONT EDIT SYSTEM
CLEAR CSAVE LIST TROFF
CLOAD DELETE NEW TRON
CLOAD? RUN

AUTO line number, increment

Turns on an automatic line numbering function for convenient entry
of programs — all you have to do is enter the actual program
statements. You can specify a beginning line number and an increment
to be used between line numbers. Or you can simply type AUTO and
hit @ATE3 , in which casc line numbering will begin at 10 and use

increments of 10. Each time you hit ;] . the Computer will
advance to the next line number.

Examples: to use line numbers
AUTO 10, 20, 30, ...
AUTO 5,5 5,10, 15,...
AUTO 100 100, 110, 120,..
AUTO 100,25 100, 125, 150, ..

To turn off the AUTO function, hit the BREAK key. (Note:
AUTO bringsupa 1\'1 e number which is already being used
will appear b number. If you do not wish to
the line, hit the BRE key to turn off AUTO function.)

T et

CLEARn

When used without an argument (e.g., type CLEAR and hit E5133)).
this command resets all numeric variables 10 zero, and all string
variables to nult. When used with an arzument (e.g., CLEAR 100),

this command performs a second function in addition to the one

just described: it makes the specified number of bytes availuble

for string storage.

Example: CLEAR 100 makes 100 bytes available for strings. When
you tum on the Computer a CLEAR 50 is executed automatically.

CLOAD “file name”

Lets you load a BASIC program stored on cassette. Place
recorder/player in Play mode (be sure the proper connections are
made and cassette tape has been re-wound to proper position).

NOTE: In LEVEL 11, CLOAD and CSAVE operate at a transfer
rate of 500 baud. This is twice as fast as LEVEL ['s cassette transfer
rate. Therefore the Volume setting used during CLOAD should be
correspondingly lower. For example, if you're using Radio Shack’s
CTR-41 Cassette Recorder, try a setting of between 4 and 6 on the
Volume control when loading programs or data you placed on the
tape. For loading pre-recorded programs, a higher Volume level may
be required. Do a little experimenting.

Entering CLOAD will turn on the cassette machine and load the
first program encountered. LEVEL Il also lets you specify a desired
“file” in your CLOAD command. For ¢xample, CLOAD “A” will
cause the Computer to ignore programs on the cassette until

it comes to one labeled “A”. So no matter where file “A™” is
located on the tape, you can start at the beginning of the tape:

file “A™ will be picked out of all the files on the tape and loaded.
As the Computer is searching for file A", the names of the files
encountered will appear in the upper right corner of the Display,
along with a blinking ***”.

Only the first character of the file name is used by the Computer for
CLOAD, CLOAD?, and CSAVE operations.

Loading a program from tape automatically clears out the
previously stored program. See also CSAVE.

CLOAD? “file name”

Lets you compare a program stored on cassette with one presently
in the Computer. This is useful when you have dumped a program
onto tape (using CSAVE) and you wish to check that the tr. er
was successful. If you labeled the file when you CSAVEJ ir, you
may specify CLOAD? “file-name . Otherwise, if you don’t specify
a file-name, the first program encountered will be tested. During
CLOAD?, the program on tape and the program in memory are

=

compared byte for byte. If there are any disctepancies (indicating
a bad dump), the message “BAD" will be displayed. In this case,
you should CSAVE the program again. (CLOAD?, unlike CLOAD,
does not erase the program memory.)

CONT

When program execution has been stopped (by the BREAK key or

by a STOP statement in the program). type CONT and

to continue execution at the point where the stop or break occurred.

During such a break or stop in execution, you may examine variable

values (using PRINT) or chunge these values. Then type CONT and
and execution will continue with the current variable values.

CONT, when used with STOP and the BREAK key, is primarily a

debugging tool.

NOTE: You cannot use CONT after EDITing your program lines
or otherwise changing your program. CONT is also invalid after
execution has ended normally.

See also STOP.

CSAYVE “file name”

Stores the resident program on cassette tape. (Cassette recorder
must be properly connected, cassette loaded, and in the Record
mode, before you ¢nter the CSAVE command.) You must specify
a file-name with this command. This (ile-name may be any alpha-
numeric character other thun double-quotes (). The program
stored on tape will then bear the specified file-name, so that it can
be located by a CLOAD command which asks for that particular
file-name. You should always write the appropriate file-names on
the cassette case for later reference.

Examples:

dumps resident program and attaches label *“1”
dumps resident program and attaches label “A’

See also CLOAD.

DELETE line number-line number

Erases program lines from memory. You may specify an individual
line or a sequence of lines. us foliows:

DELETE line number erases one line as specified

DELETE line number-line number erases all program hnes starting
with first line number specifitd
and ending with last number
specified

DELETE-line number er; all program lines up to
and including the specifiad
number

The upper line number to be deleted must be a currently used number.

=

2/3

| emnen Y

Examples:

DELETE S erases line 5 from memory (error it line 5
not used)

DELETE 11-18 erases lines 11, 18 and every line in between

If you have just entered or edited a line, you may delete that line
simply by entering DELETE. (use a period instead of the line
number).

EDIT line number

Puts the Computer in the Edit Mode so you can modify your resident
program. The longer and more complex your programs are, the more
important EDIT will be. The Edit Mode has its own selection of

b ds, and we have d d Chapter 9 to the subject.

LIST line number-line number

Instructs the Comp to display all prog: lines presently stored
in memory. If you enter LIST without an argument, the entire
prog will scroll conti ly up the screen. To stop the auto-
matic scrolling, press SHIFT and @ simultaneously. This will freeze
the display. Press any key to release the “pause” and continue the
automatic scrolling.

To examine one line at a time, specify the desired line number as
an in the LIST d. To examine a certain sequence
of program lines, specify the first and last lines you wish to
examine.

Examples:

LIST 50 displays line 50

LIST 50-150 displays line 50, 150 and everything in between
LIST 50- displays line 50 and all higher-numbered lines
LIST. dispiays current line (line just entered or edited)
LIST -50 displays all lines up to and including line 50
NEW

Erases all program lines, sets numeric variables to zzro and string
variables to null. It does not change the string space allocated by a
previous CLEAR number statement.

RUN line number

Causes Computer to execute the program stored in memory. If no
line number is specified, execution begins with lowest numbered
program line. If a line number is specified, execution begins with

the line number. (Error occurs if you specity an unused line number.)
Whenever RUN is executed, Computer also executes a CLEAR.

i =

2/4

Examples:

RUN ion begins at t. bered line
RUN 100 execution begins at line 100
RUN may be used inside a asa itisa

way of starting over with a clean slate for continuousoop pmgi:ml
such as games.

SYSTEM

Puts the Computer in the Monitor Mode, which allows you to load
object files (machine-language routines or data). Radio Shack
offers several hine-l. software pack such as-the
IN-MEMORY INFORMATION SYSTEM. You can also create your
own object files using the TRS-80 EDITOR/ASSEMBLER, which
is itself an object file.

To load an object file: Type SYSTEM and

*? will be displayed. Now enter the file-name (no quotes are
necessary) and the tape will begin loading. When loading is com-
plete, another

*? will be displayed. Type in a slash-symbol / followed by the
address (in decimal form) at which you wish execution to begin. Or
you may simply hit the slash-symbol and without any
address. In this case execution will begin at the address specified by
the object file.

TROFF
Turns off the Trace function. See TRON.

TRON

Turns on 2 Trace function that lets you follow program-flow for
debugging and execution analysis. Each time the program advances
to 2 new program line, that line number will be displayed inside a
pair of brackets,

For example, enter the following program:
10 PRINT “START"

20 PRINT "GOING"

30 GOTO 20

40 PRINT "GONE..

Now type in TRON, [T ,and RUN,
<10> START

<20> GOING

<30> <20> GOING

<30> <20> GOING

etc.

eacrimir

(Press SHIFT and @ si; 1y to pause ion and freeze
display. Press any key_to continue with execution.)
As you can see from the display, the program i€ in an infinite loop.

The numbers show you exactly what is going on. (To stop execution,
hit BREAK key.)

To turn off the Trace function, enter TROFF. TRON and TROFF
may be used inside programs to help you tell when a given line is
executed.

For example

S0 TRON

60 X=X*3.14159
70 TROFF

might be helpful in pointing out every time line 60 is executed
(assuming execution doesn’t jump directly to 60 and bypass 50).
Each time these three lines are executed, <60> <70> will be
displayed. Without TRON, you wouldn’t know whether the program
was actually executing line 60. After a program is debugged, TRON
and TROFF lines can be removed.

3/Input-Output

“The statements described in this chapter let you
send data from Keyboard to Computer, Computer
to Display, and back and forth between Computer
and the Cassette interface. These will primarily be
used inside programs to input data and output
results and messages.

Statements covered in this chapter:

PRINT INPUT
@ (PRINT modifier) DATA
TAB (PRINT modifier) READ
USING (PRINT formatter) RESTORE
PRINT # (Output to Cassette)
INPUT # (Input to Cassette)
PRINT itern list

Prints an item or a list of items on the Display. The items may be
either stnn; constants (memges enclosed in quotes), xt.nnx vlmbla,

or
of the preceding ltemx The items to be PRINTed may be scptnted
by or If are used, the cursor

automatically advances to the next print zone before printing the
next item. If semi-colons are used, no space is inserted between
the items printed on the Display.

100 PRINT 25; 1S EQUAL TO'": X 4 2
RUN

23 1S EQUAL TO 28

10 AS=“STRING"

20 PRINT AS:AS,AS: " '"AS
RUN
STRINGSTRING STRING STRING

Positive numbers are printed with a leading blank (instead of a plus
sign); all numbers are printed with a trailing btank; and no blanks are
inserted before or after strings (you can insert them with quotes

as in line 20.

AR RS B LT

- : s b it v v |

3n

10 PRINT “ZONE 1'," ZONE 2","ZONE 3","ZONE 4","ZONE 1 ETC"
RUN

ZONE 1 ZONE 2 ZONE 3 ZONE &
ZONE 1 ETC

‘There are four 16-character print zones per line.

10 PRINT “ZONE 1
RUN
ZONE 1 ZONE 3

“ZONE 3

The cursor moves to the next print zone each time a comma is
encountered.

10 PRINT "PRINT STATEMENT #10 "
20 PRINT "PRINT STATEMENT #20"

RUN
PRINT STATEMENT #10 PRINT STATEMENT #20

A trailing semi-colon over-rides the cursor-retum so that the next
PRINT begins where the last one left off (see line 10).

If no trailing punctuation is used with PRINT, the cursor drops down
to the beginning of the next line.

PRINT @ position, item list

Specifies exactly where printing is to begin. (AT was used in LEVEL
1 BASIC.) The @ modifier must follow PRINT immediately, and the
location specified must be a number from O to 1023, Refer to the
Video Display worksheet, Appendix E, for the exact position of each
location 0-1023:

100 PRINT @ 330, "LOCATION 530"

RUN this to find out where location 550 is.

Whenever you PRINT @ on the bottom line of the Display, there is
an automatic line-feed, causing everything displayed to move up

one line. To suppress this, use a trailing semi-colon at the end of

the statement.

Example:
100 PRINT @ 1000, 1000;

PRINT TAB (expression)

Moves the cursor to the specified position on the current line (or
on succeeding lines if you specify TAB positions greater than 63).
TAB may be used several times in 2 PRINT list.

The value of expression must be between 0 and 255 inclusive.

[s b

32

Example:
10 PRINT TAB(3) "TABBED 5';TAB(25) "TABBED 23"

No punctuation is required after a TAB modifier.
S X=3
10 PRINT TAB(X) X: TAB(X § 2) X } 2; TAB(X 4 3) X 43

Numerical expressions may be used to specify a TAB position.
This makes TAB very useful for graphs of mathematical functions,
tables, etc. TAB cannot be used to move the cursor to the left. If
cursor is beyond the specified position, the TAB is ignored.

PRINT USING string; item list

PRINT USING ~ This statement allows you to specify a format for
printing string and numeric values. It can be used in many applica-
tions such as printing report headings, accounting reports, checks

. .. or wherever a specific print format is required.

The PRINT USING statement uses the following format:
PRINT USING string ; value

String and value may be expressed as variables or constants. This
statement will print the expression contained in the string, inserting
the numeric value shown to the right of the semicolon as specified
by the field specifiers.

The following field specifiers may be used in the string:

» This sign specifies the position of each digit located in the
numeric value. The number of # signs you use establishes the
numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions
to the left of the number will be displayed as spaces and
those to the right of the decimal point will be displayed as
Zeros.

The decimal point can be placed anywhere in the numeric
field established by the = sign. Rounding-off will take place
when digits to the right of the decimal point are suppressed.

The comma — when placed in any position between the first
digit and the decimal point — will display a comma to the left
of every third digit as required. The comma establishes ar’
additional position in the field.
** Two asterisks placed at the beginning of the field will cause all
unused positions to the left of the decimal to be filled with
asterisks. The two asterisks will establish two more positions
in the field.

3/3

P ions St

$$ Two dollar signs pla
as a loating dollar
preceding the number.

¢ field wiil uct

*¢$ 1f these three signs are used at the beginning of th
the vacant positions to the left of the number will be fiile
the * sign and the $ sign will again position itself in the first
position preceding the number.

+ When a + sign is placed at the beginning or end of the field, 1t

will be printed as specir:ed as a + for positive numbers or as
a — for negative numbers.

— When a - sign is placed at the end of the field, it will cause a
negative sign to appear atter all negative numbers and will
appeur as a space for positive numbers.

% spaces % To specify a string field of more than one character,
T spaces 7z is used. The length of the string tield will be 2
plus the number of spaces between the percent signs.

Causes the Computer to use the first string character of the
current value.

The following program will help demonstrate these format specifiers:

10 INPUT AS, A
20 PRINT USING AS:A
30 GOTO 10

RUN this program and try various specifi¢rs and strings for AS and
various values for A.

For Example:

RUN

Tee.es 1212

1212

12222, 12,12

12,12

14w #, 121.21

% 121.21
The % sign is automatically printed if
enough to contain the nur of Jizits 1ot !
value. The entire number to the left of the decimal will be
displayed preceded by this sign.

?ew.zs, 12,127
12.13

Note that the number was rounded to two decimal places.

o - ———— SO

3/4

vt ae . e et e il

T e 212,12
+12.12

T ruR BN 12,12
-12.12

? e 8. 12,12
12.12+

T e e -1212
12.12-

T ¥ ea- 1212
12.12

7 Beae- -12.12
12.12-

T *res 1212

12

7 e RN 121212
121212

7 $S*m.o% 12,12
$12.12

e snsa 121212
12,121.2
Tegs e, 121212
12,121

s 1212
%1212

~

-

-

Another way of using the PRINT USING statement is with the string
field specifiers **!” and % spaces %.
Examples:

PRINT USING "1"; string

PRINT USING "% %';string

The “!"* sign will allow only the first letter of the string to be printed.
The “% spaces 75" allows spaces +2 characters to be printed. Again,
the string and specifier can be expressed as string variables. The
following program witl demonstrate this feature:

10 INPUT AS, BS

20 PRINT USING AS: BS

30 GOTO 10

and RUN it:

71, ABCDE
A
7 %%, ABCDE
A8
7% %, ABCD
Multiple strings or string variables can be joined together (concatenated)

by these specifiers. The **!I" sign will allow only the first letter of each
string to be printed. For example:

10 INPUT AS, BS, CS
20 PRINT USING *'1"'; AS: BS:C$

3/5

= , s

And RUNit...
7 ASC,DEF,GHI
ADE

By using more than one *!™ sign, the first letter of each string will
be printed with spaces inserted corresponding to the spaces inserted
between the “!” signs. To illustrate this feature, make the following
change to the last little program: &

20 PRINT USING "1 | I''; AS, BS, CS
And RUNit...
1 ABC,DEF.GHI

ADG

Spaces now appear between letters A, D and G to correspond with
those placed between the three “!" signs.

Try changing “! ! !™ to “%%" in line 20 and run the program.

The following program d one possible use for the PRINT
USING statement.

10 CLsS
20 AS = "**Sas e en#s ## DOLLARS"
30 INPUT "WHAT IS YOUR FIRST NAME"; F$§
40 INPUT "WHAT IS YOUR MIDDLE NAME'; M$
80 INPUT "WHAT IS YOUR LAST NAME": LS
60 INPUT "ENTER THE AMOUNT PAYABLE"; P
70 CLS: PRINT “"PAY TO THE ORDER OF '}
80 PRINT USING "I1 11", F§; "."; M$; "
90 PRINTLS

100 PRINT: PRINT USING AS; P

110 GOTO 110

RUN the program. Remember, to save programming time, use the
“7" sign for PRINT. Your display should look something like this:

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12343.6

PAY TO THE ORDER OF J. P. JONES

sreteneg12,345.60 DOLLARS

If you want to use an amount greater than 999,999 without
rounding off or going into scientific notation, then simply add the
double precision sign (#) after the variable P in Lines 60 and 100.
You will then be able to use amounts up to 16 decimal places long.

3/6

INPUT item list

Causes Computer to stop executjon until vou enter the specified
number of values via the keyboard. Tie INPUT statement may
specify a list of string or numeric variables to be input. The items in
the list must be separated by commas.

100 INPUT X8, X1, ZS, Z1

This statement calls for you to input a string-iiteral, 2 number,
another string literal, and another number, in that order. When the
statement is encountered, the Computer will display a

7

You may then enter the values all at once or one at a time. To enter
values all at once, separate them by commas. (If your string literal
includes leading blanks, colons, or commas, you must enclose the
string in quotes.)

For example, when line 100 (above) is RUN and the Computer is
waiting for your input, you could type

JIM,50.JACK,40 [JENGER B

The Computer will assign values as follows:

X$="JIM" X1=50 Z5="JACK" z1=40

If you the values one at a time, the Computer will
display a

_

... ndicating that more ¢ata is expzctzd. Continue entering data

vhich time the Computer
will advance te the next statement in your program.

Be sure to enter the correct type of value according to what is called
for by the INPUT stat 1t. For example, you i
string-valuz into a numerical variable. If you try to, t}
will display a

IREDO

7

12 Computer

and give you another chance to enter the correct type of data value,
starting with the first value called for by the INPUT list.

NOTE: You cannot input an expression into a numerical value -
you must input a simple numerical constant. (LEVEL [allowed
you to input an expression or ¢ven a variable into a numerical
variable.)

[omaroms vom

Example:

100 INPUT X1, Y1S$

200 PRINT X1, YIS

RUN

1 [youtype:] 7+3 (ENEE])

1 REDO

1. [youtype:] 10 (EN{EN)

17— [you type:] “THIS IS A COMMA:,"
10 THIS IS A COMMA:,

It was necessary to put quotes around “THIS IS A COMMA:,”
because the string contained a comma.

Ifyou [EXITA more data elements than the INPUT statement
specifies, the Computer will display the message
TEXTRA IGNORED

and continue with normal execution of your program.

You can also include a “promptmg message” in your INPUT

stztement This will m:kc it easier to input the data correctly. The
must i diately follow “INPUT", must be

enclosed ln quotes and must be followed by a semi-colon.

Example:

100 INPUT "ENTER YOUR NAME AND AGE (NAME,AGE)":NS.A
(RUN)

ENTER YOUR NAME AND AGE [NAME,AGE)?7_

DATA item list

Lets you store data inside your program to be accessed by READ
statements. The data items will be read sequentially, starting with
the first item in the first DATA statement, and ending with the last
item in the last DATA statement. Items in a DATA list may be
string or numeric constants — no expressions are allowed. If your
string values include leading blanks, colons or commas, you must
enclose these values in quotes.

It is important that the data types in 2a DATA statement match up
with the variable types in the corresponding READ statement.
DATA statements may appear anywhere it is convenient in a
program. Generally, they are placed consecutively, but this is not
required.

38

Examples:

500 READ N1S,N2S,N1,N2
1000 DATA "SMITH, J.R.","WILSON, T.M."
2000 DATA 130,175

See READ, RESTORE.

READ item list

Instructs the Computer to read a value from a DATA statement
and assign that value to the specified variable. The first time a
READ is executed, the first value in the first DATA statement
will be used; the second time, the second value in the DATA
statement will be rcad. When all the items in the first DATA
statement have been read, the next READ will use the first
value in the second DATA statement; etc. (An Out-of-Data error
occurs if there are more attempts to READ than there are
DATA items.) The foilowing program illustrates a common
application for READ/DATA statements.

s0 PRINT "NAME","AGE"

100 READ N3

110 IF N$="END" PRINT "END OF LIST':END

120 READ AGE

130 IF AGE < 18 PRINT NS,AGE

140 GOTO100

150 DATA "SMITH, JOHN",30,"ANDERSON,T.M.",20
160 DATA "JONES, BILL",13,"DOE,SALLY", 21

170 DATA "COLLINS,W.P.",17,END

RUN

NAME AGE
JONES, BILL 15
COLLINS.W.P. 17

END OF LIST

READY
>

The program locates and prints all the minors’ names from the data
supplied. Note the use of an END string to allow READing lists of
unknown length.

See DATA, RESTORE

3/9

o e tercapaiititon s |

RESTORE

Causcs the next READ statement executzd to start over with the
first item in the first DATA statement. This lets your program re-use
the same DATA lines.

Example:
100 READ X
110 RESTORE
120 READ Y
130 PRINT X,Y
140 DATA 50,60
RUN

50 50

READY
>

Because of the RESTORE statement, the second READ statement
starts over with the first DATA item.

See READ, DATA
PRINT #-1, item list

Prints the values of the specified variables onto cassette tape.
(Recorder must be properly connected and set in Record mode when
this statement is executed.) The PRINT = statement must always
specify a device number. This is because the TRS-80 can actually
input/output to two cassette machines, once you've added the
Expansion Interface described in Chapter 10. For normal use¢ with
just one recorder connected, the device number must be -1, e.g.,
PRINT #-1 (followed by a comma and then the item list).

Example:

5 A1=-30.334:B8=""'STRING-VALUE"
10 PRINT=#-1,A1,B$,"THAT'S ALL"

This stores the current vilues of Al 2ad BS. and also the string-literal
“THAT'S ALL". The value
INPUT = statement. The l\PLTs st must be 1dentical 1o the
PRINT # statement in terms of number and type of items in the
PRINT#/INPUT# lists. See INPUT = .

Special Note:

The values representz
total; otherwns
For examp!
will probably
than about 75 .h :
and when you try to INPUT#-1 (Lv d. m an ()l) (Ou(of Data)
error will occur.

= e et e o e -

310

INPUT #-1, item list

Inputs the specified number of values stored on cassette and assigns
them to the specified variable names. Like the PRINT # statement,
INPUT = requires that you specify a device number. (This will make
more sense when you have added the Expansion Interface and are
using a dual cassette system. See Chapter 10.) Use Device number -1
for normal applications without the Expansion Interface. e.g.,
INPUT #-1, fist.

Example:
30 INPUT #-1,X.PS.TS

When this is d, the Comp will tum on the tape
machine, input values in the order specified, then tumn off the tape
machine and advance to the next statement. If a string is encountered
when the INPUT list calls for a number, a bad file data error will
occur. If there are not enough data items on the tape to “fill"” the
INPUT statement, an Out of Data error will occur.

The Input list must be identical to the Print list that created the
taped data-block (same number and type of variables in the same
sequence.)

Sample Program

Use the two-line program supplied in the PRINT# description

to create a short data file. Then rewind the tape to the beginning of
the data file, make all necessary connections, and put cassette machine
in Play mode. Now run the following program.

10 INPUT#-1,A1,BS,LS

20 PRINT A1,83,LS

30 IF LS="THAT'S ALL"END
40 GOTO 10

This program doesn’t care how long or short the data file is, so long

as:

1) the file was created by successive PRINT # statements
identical in form to line 10

2) the last item in the last data triplet is “THAT'S ALL".

3/11

A T N At 1 WIS B = ST A e Y

4/Program Statements

LEVEL 11 BASIC makes several assumptions about
how to run your programs. For example:

* Variables are assumed to be single-precision (unless
you use type declaration characters — see Chapter 1,
“Variable Types”).

* A certain amount of memory is automatically set
aside for strings and arrays — whether you use all of
it or not.

* Execution is sequential, starting with the first
statement in your program and ending with the last.

The statements described in this chapter let you
over-ride these pti to give your progr

much more versatility and power.

NOTE: All LEVEL II statements except INPUT
and INPUT# can be used in the Command Mode as
well as in the Execute Mode.

Statements described in this chapter:

Tests

Type Assignment & Sequence of (Conditional
Definiti Alloca i E. .
DEFINT CLEAR END (13
DEFSNG DM sTOP THEN
DEFDBL LET GOoTO ELSE
DEFSTR Gosus

ON...GOTO

ON...GOsSuB

FOR-NEXT-STEP

ERROR

ON ERROR GOTO

RESUME

REM
This chapter also ins a di ion of data ion in LEVEL

I BASIC; this will let you predict and control the way results of
expressions, constants, etc., will be stored — as integer, single
precision or double precision.

DEFINT letter range

Variables beginning with any letter in the specified range will be

stored and treated as integers, unless a type declaration character is

added to the variabie name. This lets you conserve memory, since

[~ esresvcana T R

4N

| fomrus

integer values take up less memory than other numeric types. And
integer arithmetic is faster than single or double precision arithmetic.

fowever, a variablé defined as integer cari oaly take on valués
between —32768 and +32767 inclusive.

Examples:
10 DEFINT A,LN

After line 10, all variables beginning with A, [or N will be treated

as integers. For example, Al, AA, I3 and NN will be integer variables.
However, Al#, AA#, [3# would still be double precision variables,
because of the type declaration characters, which always over-ride
DEF statements.

10 DEFINT I-N

Causes variables beginning with I, J, K, L, M or N to be treated
as integer variables.

DEFINT may be placed anywhere in a program, but it may change
the meaning of variable references without type declaration characters.
Therefore it is normally placed at the beginning of a program.

See DEFSNG, DEFDBL, and Chapter 1, “Variable Types™.

DEFSNG letter range

Causes any variable beginning with a letter in the specified range to
be stored and treated as single precision, unless a type declaration
character is added. Single ision variables and are stored
with 7 digits of precision and printed out with 6 digits of precision.
Since all numeric variables are assumed to be single precision unless
DEFined otherwise, the DEFSNG statement is primarily used to
re-define variables which have previously been defined as double
precision or integer.

Example:

100 DEFSNG I, W-Z

Causes variables beginning with the letter I or any letter W through Z
to be treated as single precision. However, 1% would stiil be an

integer variable, and I# 2 double precision variable, due to the use
of type declaration characters.

See DEFINT, DEFDBL, and Chapter 1, “Variable Types™.

DEFDBL letter range

Causes variables beginning with any letter in the specified range to
be stored and treated as double-precision, unless a type declaration
character is added. Double precision allows 17 digits of precision; 16
digits are displayed when a double precision variable is PRINTed.

- e

4/2

Example:
10 DEFDBL S-Z, A-E

Causes variables beginning with one of the letters S through Z or
A through E to be double precision.

DEFDBL is normally used at the beginning of a program, because it
may change the meaning of variable references without type
declaration characters.

See DEFINT, DEFSNG, and Chapter 1, *“Variable Types”.
DEFSTR letter range

TCauses variables beginning with one of the letters in the specified
range to be stored and treated as strings, unless a type declaration
character is added. If you have CLEARed enough string storage
space, each string can store up to 255 characters.

Example:

10 DEFSTRL-Z

Causes variables beginning with any lgtter L through Z to be string
variables, unless a type declaration character is added. After line 10
is executed, the assignment L1 = “WASHINGTON" will be valid.

See CLEAR n, Chapter 1, “Variable Types”, and Chapter 5.

CLEARn

When used with an argument n (1 can be a constant or an expression),
this statement causes the Computer to set aside n bytes for string
storage. In addition all variables are set to zero. When the TRS-80 is
turned on, 50 bytes are automatically set aside for strings.

The amount of string storage CLEARed must equal or exceed the
greatest number of characters stored in string variables during
execution; otherwise an Out of String Space error will occur.
Example:

10 CLEAR 1000

Makes 1000 bytes avaifable for string storage.

By setting string storage to the exact amount needed, your program
can make more efficient use of memory. A program which uses no
string variables could include a CLEAR 0 statement, for example.
The CLEAR argument must be non-negative, or an error will result.

DIM name (diml, dim2, ..., dimK)
Lets you set the “depth” (number of elements allowed per dimen-
sion) of an array or list of arrays. If no DIM statement is used, a

depth of 11 (subscripts 0-10) is allowed for each dimension of each
array used.

|

4/3

Example:

10 DIM A(5),8(2,3),C$(20}

Sets up a one-dimension array A with subscripted elements 0-5;

a two-dimension array B with subscripted‘elements 0,0 to 2,3; and
a one-dimension string array C$ with subscripted elenrents 0-20.

Unless previously defined otherwise, arrays A and B will contain
single-precision values.

DIM statements may be placed anywhere in your program, and the
depth specifier may be a number or a numerical expression.

Example:

40 INPUT "NUMBER OF NAMES";N
30 DIM NA(N,2)

To re-dimension an array, you must first use a CLEAR statement, .
either with or without an argument. Otherwise an error will résult.
Example Program:

10 AA{4) =115

20 DIM AA(?7)

RUN

100 ERROR IN 20

See Chapter 6, ARRAYS.

LET variable = expression

May be used when assigning values to variables. RADIQ SHACK
LEVEL Il does not require LET with assignment statements, but
you might want to use it to ensure compatibility with those
versions of BASIC that do require it.

Examples:
100 LET AS="A ROSE IS A ROSE"

110 LET B1=1.23
120 LET X=X-21

In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.

END

Terminates execution normally (without a BREAK message).
Some versions of BASIC require END as the last statement in a
program; with LEVEL 11 it is optional. END is primarily used to
force execution to terminate at some point other than the logical
end of the program.

e 1hh LBt G2 A0 R e ot DG £, S AN W AT AN S RMICIL Y D, Al i |

4

Example:
10 INPUT S1,52
20 GOSUB 100

29 END
100 H=SQR(SI*S1 + S2*S2)
110 RETURN

The END statement in line 99 prevents program control from
“crashing’ into the subroutine. Now line 100 can only be accessed
by a branching statement such as 20 GOSUB 100.

STOP

Interrupts execution and prints a BREAK IN line number message.
STOP is primarily a debugging aid. During the break in execution,
you can examine or change variable values. The command CONT
can then be used to re-start execution at the point where it left off.
(If the program itself is altered during a break, CONT cannot be
used.)

Example:

10 X=RND{10)
1s sToOP

20 GOSUB 1000

RUN

BREAKIN 13
READY
>

Suppose we want to examine what value for X is being passed to the
subroutine beginning at line 1000. During the break, we can examine
X with PRINT X. (You can delete line 15 after the program is
debugged.)

GOTO line number

Transfers program control to the specified line number. Used alone,
GOTO line number results in an unconditional (or automatic) branch;
however, test statements may precede the GOTO to effect a con-
ditional branch.

Example:

200 GOTO 10

When 200 is d, control will ically jump back to

line 10.

L =

4/5

E - - - - - ~1
You can use GOTO in the Command Mode as dn alternative to RUN.
GOTO line munber causes execntion to begin at the specitied line
number, without an automatic CLEAR. This lets you puss vi
assigned in the Command Mode to variables in the Execure \Iud.
See IF, THEN ELSE,ON... GOTO.
GOSUB line number
Transfers program control to the subroutine beginning at the
specified line number. When the Computer encounters a RETURN
statement in the subroutine, it will then return control to the
statement which follows GOSUB. GOSUB, like GOTO may be
preceded by a test statement. Ses IF, THEN,ELSE,ON... GOSUB.
Example Program:
100 GOSUB 200
110 PRINT "BACK FROM SUBROUTINE': END
200 PRINT "EXECUTING THE SUBROUTINE"
210 RETURN
(RUN)
EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE
Control branches from line 100 to the subroutine beginning at line
200. Line 210 instructs Computer to return to the statement
immediately following GOSUB, that is, line 110.
RETURN
Ends a subroutine and returns control to statement immediately
following the most recently executed GOSUB. It RETURN is
encountered without execution of a matching GOSUB, an error will
occur. See GOSUB.
ON n GOTO line number, ..., line number
This is a multi-way branching statement that is controlled by a test
variable or expression. The general format for ON n GOTO is:
ON expression GOTO Ist line number, 2nd line number, . .., Kth line number
expression must be between @ and 2535 inclusive.
When ON ... GOTO is executed, first the expression is evaluated and
the integer portion .. I\T(u{prcnlou) s obtained. We'll refer
to this integer portion as J. The Computer counts over to the Jth

|

4/6

element in the line-number list, and then branches to the line number
specified by that element. If there is no Jth element (that is, if

J > K in the general format above), then control passes to the next
statement in the program.

If the test expression or number is less than zero, an error will occur.
The line-number list may contain any number of items.

For example,
100 ON M| GOTO 130, 180, 170, 130, 180

says “Evaluate ML. If integer portion of MI equals | then go to
line 150;
If it equals 2, then go to 160;
If it equals 3, then go to 170;
If it equals 4, then go to 150;
If it equals S, then go to 180;
If the integer portion of MI doesn’t equal any
of the numbers | through 5, advance to the
next statement in the program.”

Sample Program Usingonngoto
100 INPUT "ENTER A NUMBER":X

200 ON SGN({X)+2 GOTO 220,230,240

220 PRINT “"NEGATIVE':END

230 PRINT “ZERO":END

240 PRINT "POSITIVE™:END

SGN(X) returas —1 for X less than zero; 0 for X equal to zero; and
+1 for X greater than 0. By adding 2, the expression takes on the
values 1, 2, and 3, depending on whether X is negative, zero, or
positive. Control then branches to the appropriate line number.

ON n GOSUB line ber, ..., line b

Works like ON n GOTO, except control branches to one of the
subroutines specified by the line numbers in the line-number list.

Example:

100 INPUT "CHOOSE 1,2 OR 3'";1
105 ON ! GOSUB 200,300,400
110 END

200 PRINT "SUBROUTINE #1":
300 PRINT "SUBROUTINE #2'
400 PRINT "SUBROUTINE #3":RETURN

The test object # may be a numerical constant, variable or
expression. It must have a non-negative value or an error will oceur,

See ON n GOTO.

- e - PRI SITREANTVE T |

L'y

K

FOR name =exp TO exp STEP exp
NEXT name

Opens an iterative (repetitive) loop so that a sequence of program
statements may be executed over and over a specified number of
times. The general form is (brackets indicate optional material):

line # FOR counter-variable = initial value TO final value [STEP increment]
. [program statements}
line # NEXT [counter-variable]

In the FOR statement, initial value, final value and increment

can be constants, variables or expressions. The first time the FOR
statement is executed, these three are evaluated and the values are
saved,; if the variables are changed by the loop, it will have no effect
on the loop’s operation. However, the counter variable must not be
changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follows: the first time the FOR
statement is executed, the counter is set to the “initial value.”
Execution proceeds until a NEXT statement is encountered. At this
point, the counter is incremented by the amount specified in the
STEP increment. (If the increment has a ncgative value, then

the counter is actually decremented.) If STEP increment is not used,
an increment of 1 is assumed.

Then the counter is compared with the final value specified in the
FOR statement. If the counter is greater than the final ulue, the
loop is completed and execution continues with the statement
following the NEXT statement. (If increment was a negative
number, loop ends when counter is less than final value.) If the
counter has not yet exceeded the final value, control passes to
the first statement after the FOR statement.

Example Programs:

10 FOR I=10 TO 1 STEP —1
20 PRINTI;

30 NEXT

RUN
10 9 87 6 543 21

READY
>~

10 FORK=0TO 1 STEP.3
20 PRINTK;
30 NEXT

48

RUN

.0 .3 .6 .9
READY

>~

After K=.9 is incremented by .3, K=1.2. This is greater than the
final value 1. therefore loop ends without ever printing final
value.

10 FOR=4TOO0
20 PRINTK;
30 NEXT

RUN

4

READY
>

No STEP is specified, so STEP 1 is assumed After K is incremented
the first time, its value is 5. Since 5 is greater than the final value
0. the loop eads.

10 J=3:K=8:L=2
20 FORI=JTOK+1STEPL
25 J=0:K=0:J=0

30 PRINTI;
40 NEXT
RUN
3579
READY

>

,The variables and expressions in line 20 are evaluated once and these
values become constants for the FOR-NEXT-STEP loop. Changing
the variable values latzr has no el?2ct on the loop.

FOR-NEXT loops may be “nested™™:

10 FOR I=iTO3
20 PRINT "OUTER LOOP"

30 FORJ=1TO 2

40 PRINT " INNER LOOP"
50 NEXT J

60 NEXTI

4/9

RUN

OUTER LOOP

INNER LOOP

INNER LOOP
OUTER LOOP

INNER LOOP

INNER LOOP
OUTER LOOP

INNER LOOP

INNER LOOP
Note that each NEXT statement specifies the appropriate counter
variable; however, this is just a programmer’s convenience to help
keep track of the nesting order. The counter variable may be
omitted from the NEXT statements. But if you do use the counter
variables, you must use them in the right order; i.e., the counter
variable for the innermost loop must come first.
It is also advisable to specify the counter variable with NEXT

° when your prog allows branching to program lines

outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a
counter variable list.

Delete line SO from the above program and change line 60:

60 NEXT 41

Loops may be nested 3-deep, 4-deep, etc. The only limit is the
amount of memory available.

ERROR code

Lets you “simulate”™ a specified error during program execution.

The major use of this statement is for testing an ON ERROR GOTO
routine. When the ERROR code statement is encountered, the Com-
puter will proceed exactly as if that kind of error had occurred. Refer
to Appendix B for a listing of error codes and their meanings.

Example Program:
100 ERROR 1

RUN

INF ERROR
READY
>

1 is the error code for “attempt to execute NEXT statement without
a matching FOR statement™.

See ON ERROR GOTO, RESUME.

Bxrr

4/10

ez, > =

ON ERROR GOTO line number

When the Computer encounters any kind of error in your program,
it normally breaks out of execution and prints an error message.
With ON ERROR GOTO, you can set up an error- trapping routine
which will allow your program to “recover” (rom an ¢fror and
continue, without any break in execution. Normally you have a
particular type of error in mind when you use the ON ERROR
GOTO statement. For example, suppose your program performs
some division operations and you have not ruled out the
possibility of division by zero. You might want to write a routine
to handle a division-by-zero error, and then use ON ERROR GOTO
to branch to that routine when such an error occurs.

Example:

S ONERROR GOTO 100

10 c=1/0

In this “loaded” le, when the Comp attempts to i

line 10, a divide-by-zero error will occur. But because of line 5,
the Computer will simply ignore line 10 and branch to the error-
handling routine beginning at line 100.

NOTE: The ON ERROR GOTO must be executed before the error
occurs or it will have no effect.

The ON ERROR GOTO can be disabled by an
ON ERROR GOTO 0. If you use this inside an error-trapping routine,
BASIC will handle the current error normally.

The error handling routine must be terminated by a RESUME
statement. See RESUME.

RESUME line number

Terminates an error handling routine by specifying where
normal execution is to resume.

RESUME without a line number and RESUME 0 cause the Com-
puter to return to the statement in which the error occurred.

RESUME followed by a line number causes the Computer to
branch to the specified line number.

RESUME NEXT causes the Computer to branch to the statement
following the point at which the error occurred.

Sample Program with an Error Handling Routine

5 ON ERROR GOTO 100

10 INPUT "SEEKING SQUARE ROOT OF'":X

20 PRINT SQR(X}

30 GOTO 10

100 PRINT "IMAGINARY ROOT:"; SQR(-X);""*1"
110 RESUME 10

L

/11

RUN the program aad try inpuiting 4 nsy.

REM

Instructs the Computer 19 ignore the rast of the prozram !
atlows you to insert comments (REMarks) 1ato your preg
documentation. Then, when you (or someone else) look at a
listing of your program, it’ll be a lot casier to figure out. If REM is
used in a multi-statement program line, it must be the last state-
ment.

s value.

Examples Program:

10 REM ** THIS REMARK INTRODUCES THE PROGRAM **

20 REM ** AND POSSIBLY THE PROGRAMMER, TOO. **

30 REM ** -

40 REM ** THIS REMARK EXPLAINS WWHAT THE .«

S0 REM ** VARIOUS VARIABLES REPRESENT: .-~

60 REM **C = CIRCUMFERENCE R = RADIUS .-

70 REM ** D = DIAMETER .-

80 REM

90 INPUT ""RADIUS";R : REM THIS IS FIRST EXECUTABLE LINE

The above program shows some of the graphic possibilities of REM
statements. Any alphanumeric character may be included in a REM
statement, and the maximum length is the same as that of other
statements: 255 characters total.

IN LEVEL 1l BASIC, an apostrophe (SHIFT 7) may be used as
an abbreviation for :REM.

100 ' THIS TOO IS A REMARK
IF true/false expression action-clause

Instructs the Computer to test the foll ¢ logical or relational
expression. If the expression is True, control will proceed to the
*action” clause immediately following the expression. If the
expression is False, control will jump to the matching ELSE state-
ment (if there is one) or down to the next program line.

In numerical terms, if the expression has a non-zero value, it is
always equivalent to a logical True.

Examples:

100 IF X >127 PRINT “"OUT OF RANGE'": END
If X is greater than 127, control wili pass to the PRINT stat
and then to the END statement. But if X s not greater t

control will jump down to the aext lire in the program, ! l|\|m|" the
PRINT and END statements.

100 IF 0<=X AND X< :90 THEN Y=X+180

1f both expressions are True then Y wili b
Otherwise control will pass directly to ¢
the THEN clause.

==/ S

St |

NOTE: THEN is optional in the above and similar statements. How-
ever, THEN is sometimes required to eliminate an ambiguity. For
example. 400 IF Y=M THEN M=0 won't work without THEN.

500 INPUT AS: IF AS="YES" THEN 100

600 INPUT AS: IF AS="YES" GOTO 100

The two statements have the same effect. THEN is not optional in
line 500 and other IF expression THEN line number statements.

100 IF A>D0 AND B>0 PRINT "BOTH POSITIVE"

The test expression may be composed of several relational expressions
joined by logical operators AND and OR.

See THEN, ELSE,

THEN statement or line number

Initiates the “‘action clause” of an IF-THEN type statement. THEN
is optional except when it is used to specify a branch to another
line number, as in 1F A< 0 THEN 100. THEN should also be used in
IF-THEN-ELSE statements.

ELSE statement or line number

Used after IF to specify an alternative action in case the IF test fails.
(When no ELSE statement is used, control falls through to the next
program line alter a test fails.)

Examples:
100 INPUT AS: IF AS="YES" THEN 300 ELSE END

In line 100, if AS equals “YES™ then the program branches to line
300. But if AS does not equal “YES", program skips over to the
ELSE statement which then instructs the Computer to end execution.

200 IF A<B PRINT"A<B"ELSE PRINT "B<=A"

If A is less than B, the Computer prints that fact, and then proceeds
down to the next program line, skipping the ELSE statement.

If A is not less than B, Computer jumps directly to the ELSE state-
ment and priats the specified message. Then control passes to the
next statement in the program.

200 IF A>.001 THEN 8=1/A: A = A/5 : ELSE 260

If A >.001 is True, then the next two statements will be executed,
assigning new values to B and A. Then the program will drop down
1o the next line, skipping the ELSE statement. But if A>.001 is

-

4/13

Fulse, the program jumps directly over to the ELS pent,
which then instructs it to branch to line 250. Note that GOTO is
not required after£LSE.

[F-THEN-ELSE statements may be nested, but you have to ke
care to match up the IFs and ELSEs.

10 INPUT "ENTER TWO NUMBERS'";A.B
20 IF A< =B THEN IF A<B PRINT A;:ELSE PRINT “NEITHER";:ELSE PRINT B;
30 PRINT"IS SMALLER"

RUN the program, inputting various pairs of numbcrs. The program
picks out and prints the smaller of any two numbers you enter.
Note that the THEN statements and the colons may be omitted
from line 20,

Data Conversion

Every number used during execution must be typed as either

integer, single precision or double precision. Often this typing involves
converting a number from one form to another. This may produce
unexpected, contusing results -- unless you understand the rules
governing such automatic typing and type conversion.

Type Conversion

Constants are the actual numbers (not the variable names) used by
LEVEL Il BASIC during exzcution. They may appear in your
program (as in X=1/3, the right side of the equation) or they may be
temporary (intermediate) constants created during the evaluation of
an expression. In any case, the tollowing rules determine how a
constant is typed:

L If a constunt contains 8 or more digits, or if D is used in the
exponent, that number is stored as double precision. Adding
a # declaration character also forces a constant to be stored
as double precision.

1L If the number is not double-precision, and if
range —32763 to +32767 or 1f it contuins a de
then the number is stored as single-precision. If
expressed in exponential notation with E praced:
the number is single precision.

1L If neither I nor I is true of the constant, then it is stored as
an integer.

Example Program:
10 PRINT 1.234367, 1.2343678
RUN

1.23457 1.2345678
READY
>—

p ree ——— B R |

4/14

The first constant contains 7 digits: so by Rules I and I, it becomes
a single-precision number. Single precision numbers are printed as

6 digits with the least significant digit properly rounded. But the
second constant contains 3 digits, therefore by Rule Tit becomesa
double precision number, stored internally as 1.2343678000000000.
The number is printed out with all ¢ight significant digits showing,
and all the trailing zeros suppressed.

Typing of Constants

When operations are performed on one or two numbers, the result
must be typed as integer, double or single-precision.

When a +, —, or * operation is performed, the result will have the
same degree of precision as the most precise operand. For example,
if one operand is single-precision, and the other double-precision,
the result will be double precision. Only when both operands are
integers will a result be integer. If the result of an integer *, —, or +
operation is outside the integer range, the operation will be done in
single precision and the result stored as single precision.

Division follows the same rules as +, * and —, except that it is never
done at the integer level: when both operators are integers, the
operation is done in single precision with a single-precision result.

During a compare operation (<, >.=.etc.) the operands are converted
to the same type before they are compared. The less precise type
will always be converted to the more precise type.

If you are using logical operators for bit manipulations or Boolean
operations (see Chapter 8, **Logical Operators™), you'll nead to
read the next paragraph: otherwise, skip it.

The logical operators AND, OR and NOT first convert their operands
to integer form. [f one of the operands is outside the allowable range
for integers (—32768 to +32767) an overtlow error occurs. The result
of a logical opzration is always an integer.

Effects of Type Conversions on Accuracy

When a nuimber is converted to integer type, it is “rounded down™;
i.e.. the largest integer which is not greater than the number is used.
(This is the same thing that happens when the INT function is applied
to the number.)

When a number is converted from double to single precision, it is
S rounde=d™ (the least signiticant digit is rounded up if the
fractional part > =5, Otherwise it is feft unchanged).

[RNCUIEEEE———-

In the following examples, keep.in mind that single precision variables
are stored with 7 digits of precision, but printed out with 6 digits

(to allow for proper rounding). Similarly, double precision values are
stored with 17 digits but printed out with only 16.

Example Programs:

10 A#=1.6666666666666667
20 BI=A#

30 C%=A#

40 PRINT BI,C%

RUN

1.66667 1
READY
>~

When a single precision number is converted to double precision,
only the seven most significant digits will be accurate. And if the single
precision number didn’t contain seven significant digits, watch out!

Examples:
10 Al=1.3
20 A#=Al

30 PRINT A#
RUN
1.299999952316284

READY
>

10 A%=2/3
20 PRINT A#

RUN

.6666665865348816
READY
>

2/3 is converted to a single precision constant; therefore only the
first seven digits of A are accurate.

10 A#=2/32
20 PRINT A#

RUN
.66666666666666667

READY
>~

4/16

Since the expression 2/3# is eval d as a doyble p
all 16 digits of A# are accurate, with the leas significant properly
4/5— rounded.

When assigning a constant value to a double precision variable, be
sure to include as many significant digits as possible (up to 17).

If your constant has seven or less significant digits, you might as well
use single precision.

Examples:

10 Pi#=3.14135926533897932
20 E#=2.7182818224590452

= SNSRI I PO IR INAY PGNP TNy A BN 21 Al o B AT E DT ST % VR 4 BT 0

Ly

5/Strings

“Without string-handling capabilities, a computer is
just a super-powered calculator.” There’s an element
of truth in that exaggeration; the more you use the
string capabilities of LEVEL II, the truer the state-
ment will seem.

LEVEL I BASIC offered two string variables which
could be input and output to make your programs
look “friendly” (as in HELLO, BOB1). In LEVEL I
you can do much more than that. First of all, you're
not limited to two strings — any valid variable name
can be used to contain string values, by the DEFSTR
statement or by adding a type declaration character
to the name. And each string can contain up to 255
characters.

Moreover, you can compare strings in LEVEL II, to

Iphabetize them, for You can take strings
apart and string them together (concatenate them).
For background material to this chapter, see Chapter
1, “Variable Types™ and “Glossary”, and Chapter 4,
DEFSTR.

Subjects and functions covered in this chapter:

“String Input/Output™ FRE (string) MIDS
“String Comparisons” INKEYS RIGHTS
“*String Operations™ LEN STRS
Asc LEFTS STRINGS
CHRS VAL

INSTRING Subroutine
String Input/QOutput
String constants —sequences of alphanumeric characters — may be
input to a program just as numeric constants are input, using INPUT,

READ/DATA, and INPUT # (input from cassctte). They may
generally be input without quotes:

10 INPUT "YES OR NO".RS$
20 |IF RS="YES"PRINT"THAT'S BEING POSITIVEI'":END
30 PRINT "WHY NOT?"

RUN

YES OR NO?_(you type] ves [R5}
THAT'S BEING POSITIVE!

READY

>—

5n

However, to input a string which i colons,
or leading blanks, the string must be eyclosed in quates.

10 INPUT "'LAST NAME, FIRST NAME" NS
20 PRINT NS

RUN

ENTER
SMITH, JOHN
READY

>

LAST NAME, FIRST NAME? _ [you type:] “SMITH, JOHN"

The same rule regarding commas, colons and leading blanks applies
to values input via DATA statements and INPUT » statements.

10 READ TS, NS, DS
20 PRINT TS:NS:DS
30 DATA “TOTALIS:
40 DATA DOLLARS.

'ONE THOUSAND, TWO HUNDRED "

T$ requires quotes because of the colon;
NS requires quotes because of the comma.

String Comparisons
Strings may be d l'or qu lity or alphabeti d
When they are checked h including any

very
leading or trailing bhnks, musl be (he same or the test fails.
600 IF Z$="END"THEN999

Strings-are d ch for-ch from left to right.
Actually the ASCll codes for the characters are compared, and the
character with the lower code number is considered to precede the
other character. (See Appendix C, ASCII Codes.)

For le, the “A!" precedes the “A=",
because *“!" (ASCII code: decimal 33) precedes “#™ (ASCII code:
decimal 35). When strings of differing lengths are compared, the
shorter string is precedent if its characters are the same as those in
the longer string. For example, "A" precedes “A ™.

The following refational symbols may be used to compare strings;

- <> < <= > >=
Note: Wh«.m.ver a string isusedinac n exp
Or an assi| the must be enclosed in quotes:

AS=""CONSTANT"
IF AS ='"'CONSTANT" PRINT AS
(The quotes are required in both cases.)

52

String Operations

Not including the functions described below, there is only one string
operation — concatenation, represented by the plus symbol +.

Example Programs:

100 CLEAR 7S

20 AS='"A ROSE"

30 BS$="1S A ROSE"

40 CS=AS+BS+BS$+BS+"."
50 PRINTCS

RUN

A ROSE IS A ROSE IS A ROSE IS A ROSE.
READY
>

In line 40, the strings are concatenated — strung together.

10 Ts="100"

20 SuBS="s"

30 CODES="32L"

40 LCS=TS+"."+SUBS+CODES
50 PRINT LCS

RUN

100.532L
READY
>

ASC (string)

Returns the ASCII code (in decimal form) for the first character of
the specified string. The string-argument must be enclosed in
parentheses. A null-string argument will cause an error to occur.

100 PRINT ASC("A")
110 TS="AB": PRINT ASC(TS$}

Lines 100 and 110 will print the same number.

The argument may be an expression involving string operators and
functions:

200 PRINT ASC(RIGHTS(TS, 1))}

Refer to the ASCII Code Table, Appendix C. Note that the ASCII
code for a lower-case letter is equal to that letter’s upper-case ASCII
code plus 31. So ASC may be used to convert upper-case values to

© - v ey > - o r——

5/3

. . S

lower-case values — uscful in case you have a line printer with lower-
case capabilities and the proper interfacing hardware/sottware).

ASC may also be used to create coding/decoding procedures (see
example at end of this chapter).

CHRS (expression)

Performs the inverse of the ASC function: returns a one-character
string whose character has the specified ASCII, control or graphics
code. The argument may be any number from 0 to 255, or any variable
expression with a value in that range. Argument must be enclosed in
parentheses.

100 PRINT CHRS(35) prints a pound-sign #

Using CHRS, you can even assign quote-marks (normally used as
string-delimiters) to strings. The ASCII code for quotes * is 34.
So A$=CHRS(34) assigns the value ** t0 AS.

100 A$=CHRS$(34)
110 PRINT"HE SAID, ";AS$;"HELLO.";AS

RUN

HE SAID, "HELLO."
READY
>

CHRS may also be used to display any of the 64 graphics characters.
(See Appendix C, Graphics Codes.)

10 CLS

20 FOR =129 TO 191
30 PRINT I:CHRS(I),
40 NEXT

30 GOTO 50

(RUN the program to see the various graphics characters.)

Codes 0-31 are display control codes. Instead of returning an actual
display character, they return a control character. When the control
character is PRINTed, the function is performed. For example, 23 is the
code for 32 character-per-line format; so the command, PRINT CHRS(23)
converts the display format to 32 characters per line. (Hit CLEAR, or
execute CLS, to return to 64 character-per-line format.)

5/a

FRE (string)

When used with a string variable or string constant as an argument,
returns the amount of string storage space currently available.
Argument must be enclosed in parentheses.

500 PRINT FRE(AS), FRE(LS), FRE("Z")
All return the same value.

The string used has no significance; it is a dummy variable. See
Chapter 4, CLEAR n.

INXEYS

Returns a one-character string determined by an instantaneous key-
board strobe. If no key is pressed during the strobe, a nuil string
(length zero) is returned. This is a very powerful function because
it lets you input values while the Computer is executing ~ without
using the [IXVT3) key. The popular video games which let you
fire at will, guide a moving dot through a maze, play tennis, etc.,
may all be simulated using the INKEY'S function (plus a lot of other
program fogic, of course).

Characters typed to an INKEYS are not automatically displayed on
the screen.

Because of the short duration of the strobe cycle (on the order of
microseconds) INKEYS is invariably placed inside some sort of
1oop, so that the Keyboard is scanned repeatedly.

Example Program:
10 cLS
100 PRINT @ 540,INKEYS$: GOTO 100

RUN the program; notice that the screen remains blank until the
first time you hit a key. The last key hit remains on the screen
until you hit another one. (Whenever you fail to hit a key during a
keyboard strobe, a null string, i.e., “nothing”, is PRINTed at 540.
This “nothing™ has no effect on the currently displayed character
at 540.)

INKEYS may be used in sequences of loops to allow the user to
build up a longer string.

Example:

90 PRINT "ENTER THREE CHARACTERS"

100 AS=INKEYS:IF AS=""THEN 100 ELSE PRINT AS;
110 BS=INKEY3 : IF BS=""THEN 110 ELSE PRINT BS;
120 CS=INKEYS : THEN 120 ELSE PRINT CS;
130 D$=AS+BS+CS

A three-character string DS can now be entered via the keyboard
without using the EEI1{3] key-

NOTE: The statement IF Ag="* compares AS to'the null string.

—

5/s

LEFTS$ (string, n)
Returns the first n characters of string. The arguments must be

enclosed in quotes. string may be a string constant or expression,
and 7 may be a numeric expression.

Example Program:

10 AS="TIMOTHY"

20 BS=LEFTS(AS.3)

30 PRINTBS"~-THAT'S SHORT FOR '";AS

RUN

TIM-THAT'S SHORT FOR TIMOTHY
READY
>

LEN (string)
Retums the character length of the specified string. The string

variable or must be enclosed in h

10 AS
20 B$="TOM"

30 PRINT AS,8$,83+8S

40 PRINT LEN(AS),LEN(BS),LEN(BS+BS)

RUN
TOM TOMTOM
] 3 L]
READY
>—
MIDS (string,p,n)

Retums a substring of string with length » and starting at position
p- The string name, length and starting position must be enclosed in
parentheses. siring may be a string constant or expression, and n
and p may be numeric expressions or constants. For example,
MID$(L$.3,1) refers to a one-character string beginning with the 3rd
character of LS.

Example Program:

The first three digits of a local phone number are sometimes called

the “exchange” of the number. This program looks at 1 complete

phone number (area code, exchange, last four digits) and picks out

the exchange of that number.

10 INPUT "AREA CODE AND NUMBERS (NO HYPHENS, RLEASE)'":PHS
20 EXS=MIDS{PHS, 4, 3)

30 PRINT "NUMBER IS IN THE ";EXS$;" EXCHANGE."

et e 2

5/6

SIS : z o @1

If no argument is specified for the length n, the entire string begin-
ning at position p is returned.

RIGHTS (string,n)
Retumns the last # characters of string. string and n must be
enclosed in parcmhescs :mnx may be a smn; constant or variable,

and n may bea ble. If LEN(string) is
less than or equal to a1, the entire Nﬂu is retumed.

RIGHTS(STS,4) returns the last 4 characters of STS.

STRS (expression)
Converts a ic exp or 0 a string. The numeric
ion or must be enclosed in th STRS(A),

for example, returns a string equal to the character representation of
the value of A. For example, if A=58.5, then STRS(A) equals the
string ** 58.5". (Note that a leading blank is inserted before “58.5"
to allow for the sign of A). While arithmetic operations may be
performed on A, only string operations and functions may be
performed on the string **58.5™.

PRINT STRS$(X) prints X without a trailing blank; PRINT X
prints X with a trailing btank.

Example Program:

10 A=58.5:B=-58.5
20 PRINT STRS(A}
30 PRINT STR$(8)
40 PRINT STRS(A+B)
30 PRINT STRS(A}+STRS(B)
RUN

s8.3

-58.5

0

58.5-38.5

READY

>

Note that the leading blank is filled by the minus sign in S’.I'RS(B).
STRINGS (n, character or number)

Returns a string posed of n ch For
“R‘\GS(JO --t") retums l‘ct‘-.‘ut‘.‘lt..t‘.‘c.tu."’..."
STRINGS is useful in creating graphs, tables, etc.

character can also be a number from 0-255. in this case, it will be
treated as an ASCIL, control, or graphics code.

|7

3
Example:
STRINGS(64,191) returns a string composed of 64 graphics blocks.
VAL (stzing)
Performs the inverse of the STRS function. ot the :
represented by the characters in a string argu . For example,
if AS="12" and B$="34" then VAL(A3+"."+83) returns the value
12.34. VAL(AS+ E"+BS) returns the value 12E34, that is 12 x 1034,
VAL operates a little ditferently on mixed strings — strings whose
values consist of a number followed by aiphanumeric characters.
In such cases, only the leading number is used in determining VAL,
the alphanumenc remainder is ignored.
For example: VAL (**1C0 DOLLARS™) returns 100.
This can be a handy short-cut in examining addresses, for example.
Example Program:
10 REM "WHAT SIDE OF THE STREET?"
15 REM EVEN=NORTH. ODD=SOUTH
20 INPUT "ADDRESS: NUMBER AND STREET'; ADS
30 C=INT(VAL(ADS)/2)*2
40 IF C=VAL(ADS) PRINT "NORTH SIDE": GOTO 20
50 PRINT "SOUTH SIDE": GOTO 20
RUN the program, entering strect addresses like 1015 SEVENTH
AVE".
Coding/Decodirg Program for lllustration Only
S CLS: PRINT CHRS(23)
10 CLEAR 1000
20 INPUT "ENTER MESSAGE'": M$
30 FOR K=1 TO LEN(MS)
40 T$=MIDS(MS, K, 1)
60 CD=ASC(TS)+$: IF CD>255 CD=CD-255
70 NUS=NUS + CHRS(CD}
80 NEXT
90 PRINT "THE CODED MESSAGE IS"
100 PRINT NUS
110 FOR K=1 TO LEN(NUS)
120 T$=MID3(NUS. K. 1)
130 CD=ASC(T3)-5: iF CD<O CD=CD+255
140 OLDS$=OLDS+CHR3({CD)
150 NEXT
160 PRINT “"THE DECODED MESSAGE IS"
170 PRINT OLDS
RUN the program.
| == - |

5/8

Lines 30-80 and 110-130 demonstrate how you can “peel of ™ the
characters of a string for examination. Lines 60 and 130 demonstrate
manipulation of ASCII codes.

Instring Subroutine

Using the intrinsic string functions MIDS and LEN, it's easy to
create a very handy string-handling subroutine, INSTRING. This
function takes two string arguments and tests to see whether one is
contained in the other. When you are searching for a particular
word, phrase or piece of data in a larger body of text or data,
INSTRING can be very powerful. Here's the subroutine:

999 END ' THIS IS A PROTECTIVE END-BLOCK
1000 FOR I=1TO LEN(XS)-LEN(YS)+1

1010 IF Y$=MID3(XS.I,LEN(YS)) RETURN

1020 NEXT: 1=0: RETURN

To use the subroutine, first assign the value of the larger string (the
‘!search area”) to XS, and the value of the desired substring to Y$.
Then cali the subroutine with GOSUB. The subroutine will return a
value of I which tells you the starting position of YS in the larger
string X3: orif Y$ is not a substring of XS, [is returned with a
value of zero.

Here's a sample program using the INSTRING subroutine. (Type in
the above lines 999-1020 plus the following.)

5 CLEAR 1000: CLS

10 INPUT "ENTER THE LONGER STRING". X3

20 INPUT "NOW ENTER THE SHORTER STRING': Y$
30 GOSuUB 1000

40 IF 1=0 THEN 70

50 PRINT ¥S3;" 1S A SUBSTRING OF ":X$

55 PRINT "STARTING POSITION:""iI,

60 PRINT "ENDING POSITION: "I+
65 PRINT: PRINT: GOTO 10

70 PRINT Y3;" ISNOT CONTAINED IN ';X3
80 GOTO 10

{(Ys)-1

RUN the program, entering the string to be searched and then the
desired substring.

TIRFTRIT

-

6/Arrays

An array is simply an ordered list of values.

In LEVEL 11 these values may be either numbers
or strings, depending on how the array is defined
or typed. Arrays provide a fast and organized way
of handling largz amounts of data. To illustrate the
power of arrays. this chapter traces the development
of an array to store checkbook data: check numbers,
dates written, and amounts for each check.

In addition, several matrix manipulation subroutines
are listed at the end of this chapter. These sequences
will let you add, multiply, transpose, and perform
other operations on arrays.

Note: Throughout this chapter, zero-subscripted
elements are generally ignored for the sake of sim-
plicity. But you should remember they are available
and should be used for the most efficient use of
memory. For example, after DIM A(4), array A
contains § eiements: A(0), A(1), A(2), A(3), A(4).

For background information on arrays, see Chapter
4, DIM, and Chapter 1, “Arrays™.

A Check-Book Array

Consider the following table of checkboc.: information:

Check # Date Written Amount
025 1-1-78 10.00
026 1-5-78 39.95
027 1-7-78 23.50
028 1-7-78 149.50
029 1-10-78 4.90
030 1-15-78 12.49

Note that every item in the table may be specified simply by
reference to two numbers: the row number and the column number.
For example, (row 3, column 3) refers to the amount 23.50. Thus
the number pair (3,3) may be called the **subscript address™ of the
value 23.50.

Let's set up an array, CK. to correspond to the checkbook informa-
tion table. Since the table contains 6 rows and 3 columns, array CK
will need two dimensions: one for row numbers, and one for column
numbers. We can picture the array like this:

T

6/1

P ——————————— -

A(1,1)=025 A(1,2)=10173 A(1.3)=10.00

A(6,1)=030 A(6,2)=1.1578 A(6,3)=12.49

Notice that the date information is recorded in the form mm.ddyy.
where mm=month number, dd=day of month, and yy = last two
digits of year. Since CK is a numeric array, we can't store the data
with alpha-numeric characters such as dashes.

Suppose we assign the appropriate values to the array elements.
Unless we have used a DIM statement, the Computer will assume
that our array requires a depth of 10 tor each dimension. That is,
the Computes will set aside memory locations to hold CK(7,1),
CK(7,2), ..., CK(9,1), CK(9,2) and CK(9,3). In this case, we don’t
want to set aside this much space, so we use the DIM statement at
the beginning of our program:

10 DIM CK(6,3) 'SET UPA 6BY 3 ARRAY (EXCL. ZERO SUBSCRIPTS)

Now let’s add program steps to read the values into the array CK:

20 FOR ROW=1TO 6

30 FORCOL=1TO 3

40 READ CK{ROW,COL)
50 NEXT COL, ROW

90 DATA 025, 1.0178, 10.00
91 DATA 026, 1.0578, 39.95
92 DATA 027, 1.0778, 23.50
93 DATA 028, 1.0778, 149.50
94 DATA 029, 1.1078, 4.90
95 DATA 030,1.1578, 12.49

Now that our array is set up, we can begin taking advantage of its
built-in structure. For example, suppose we want to add up all the
checks written. Add the following lines to the program:

100 FOR ROW=1TO 6
110 SUM=SUM+CK(ROW,3)
120 NEXT

130 PRINT"TOTAL OF CHECKS WRITTEN";
140 PRINT USING"S32#=.55'"SUM

Now let’s add program steps o print out all checks that were written
on a given day.

200 PRINT “SEEKING CHECKS WRITTEN ON WHAT DATE (MM.DDYY)"":
210 INPUT OT

230 PRINT :PRINT"ANY CHECKS WRITTEN ARE LISTED BELOW:"

240 PRINT“CHECK #","AMOUNT" : PRINT

250 FOR ROW=1TO 6

260 IF CKIROW,2])=DT PRINT CK{ROW. 1), CK{ROW.3)

270 NEXT

It’s easy to generalize our program to handle checkbook information
for all 12 months and for yzars other than 1978.

All we do is increase the size (or “‘depth™) of each dimension as
needed. Let's assume our checkbook includes check numbers 001
through 300, and we want to store the entire checkbook record.
Just make these changes:

10 DIM CK(300,3) 'SET UP A 300 BY 3 ARRAY
20 FOR ROW=1 TO 300

and add DATA lines for check numbers 001 through 300. You'd
probably want to pack more data onto each DATA line than we did
in the above DATA lines.

And you'd change all the ROW counter final values:

100 FOR ROW=1 TO 300

250 FOR ROW=1 TO 300

Other Types of Arrays

Remember, in LEVEL I1 the number of dimensions an array can
have tand the size o th of the array), is limited only by the
amount of memory available. Also remember that string arrays can
be used. For example, C3(X) would automatically be interpreted as
a string array. And if you use DEFSTR A at the beginning of your
program, any array whose name > :ins with A would also be a string
array. One obvious application for 4 string array wouid be to store
text material for access by a string manipulation program.

10 CLEAR 1200
20 DIM TXTS3{10)

would set up a string array capable of storing 10 lines of text.
1200 bytes were CLEARed to allow for 10 sixty-character lines,
plus 600 extra bytes for string manipulation with other string
variables.

6/3

o T———

Array/Matrix Manipulation Subrcutines

To use this subroutine, your main program must supply values for
NI (rows) and N2 (columas).

30100 REM MATRIX INPUT SUBROUTINE [2 DIMENSION)
30110 FOR I=1 TO N1t

30120 PRINT "INPUT ROW'":)

30130 FOR J=1 TO N2

30140 INPUT A{LJ)

30160 NEXT J!

30170 RETURN

To use this subroutine, your main program must supply values for
N1 (dim=1), N2 (dim=2) and N3(dim=3).

30200 REM MATRIX READ SUBROUTINE (3 DIMENSION)
30205 REM REQUIRES DATA STMTS.

30210 FOR K=1 TO N3

30220 FOR I=1 TO N}

30230 FOR J=1 TO N2

30240 READ A()J.K)

30270 NEXT J LK

30280 RETURN

Main program supplies values for N1, N2, N3, etc.

30300 REM MATRIX ZERO SUBROUTINE (3 DIMENSION}
30310 FOR K=1 TO N3

30320 FOR J=1 TO N2

30330 FOR I=1 TO N1

30340 A{lLJK}=0

30370 NEXT LJK

30380 RETURN

Main program supplies values for N1, N2, N3,

30400 REM MATRIX PRINT SUBROUTINE (3 DIMENSION})
30410 FOR K=1 TO N3
30420 FOR I=1 TO N}

30430 FOR J=1 TO N2
30440 PRINT A{lL.J.K),
30450 NEXT J:PRINT

30460 NEXT I:PRINT
30470 NEXT K:PRINT
30480 RETURN

6/4

Main program supplizs values for N1, N2, N3,

30500 REM MATRIX INPUT SUBROUTINE (3 DIMENSION)
30510 FOR K=1 TO N3 _
30520 PRINT "PAGE"K
30530 FOR =1 TONI
30540 PRINT "INPUT ROW

30550 FOR J=1 TO N2
30560 INPUT A(LJ.K)
30870 NEXTJ

303580 NEXT!
30590 PRINT:NEXT K
30595 RETURN

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

30600 FOR K=1 TO N3:'N3=3RD DIMENSION
30610 FOR J=1 TO N2:'N2=2ND DIMENSION (ROWS)

30620 FOR I1=1 TO N1:'N1=1ST DIMENSION (ROWS)
30630 B{LLK)=A[1LJ,K)*X
30640 NEXT |

30650 NEXT J
30660 NEXTK
30670 RETURN

Multiplies each element in MATRIX A by X and constructs matrix B

Transposition of a Matrix (2 Dimensional)

30700 FOR!1=1 TO N1t
30710 FOR J=1 TO N2
30720 B(JLI1}=A(LY)
30730 NEXTJ

30740 NEXT

30750 RETURN

Transposes matrix A into matrix B

30800 FOR K=1 TO N3
30810 FOR J=1TO N2

30820 FOR 1=1 TO N1
30830 ClLAK]=A{1).K)+B(1,1K)
30810 NEXT I

30850 NEXT)
30850 NEXT K
30870 RETURN

6/5

i |

Array Element-wise Multiplication (3 Dimensional)

30900 FORK=1TO N3

30910 FOR J=1 TO N2

30920 FOR I=1 TO N1

30930 Cl1,J.K)=A(1,J.K)*B(1.).K)
30940 NEXT I

30950 NEXT J

30960 NEXTK

Multiplies each element in A times its corresponding element in B.

Matrix Multiplication (2 Dimensional)

40000 FOR I=1 TO N1

40010 FOR J=1 TO N2

40020 C(1,J)=0

40030 FOR K=1 TO N3

40040 C{1.J)=C(1,J)+A(1,K)*B(K,I)
40050 NEXT K

40060 NEXTJ

40070 NEXT |

A must be an NI by N3 matrix; B must be an N3 by N2 matrix. The
resultant matrix C will be an N1 by N2 matrix. A, B, and C must be
dimensioned accordingly.

6/6

7/ Arithmetic Functions

LEVEL II BASIC offers a wide variety of intrinsic
(““built-in") functions for performing arithmetic and
special operations. The special-operation functions are
described in the next chapter.

All the common math functions described in this
chapter return single-precision values accurate to six
decimal places. ABS FIX and INT return values
whose i ds on the precision of the
argument. The conversion funcnons (CINT, CDBL,
etc.) return values whose precision depends ort the
particular function. For all the functions, the
must.be enclosed in p h The argu-
ment may be either a numeric vnnable, expression or
constant.
Functions described in this chapter:

ABms cos INT SGN
ATN csNG Lo6 sIN
coBL £xp RANDOM sar
CINT F1x RND TAN
ABS (x)

Returns the absolute value of the argument. ABS(X)=X for X greater
than or equal to zero, and ABS(X)=—X for X less than zero.

100 IF ABS(X)< 1E-6 PRINT ""TOO SMALL"

ATN (x)

Retumns the arctangent (in radians) of the argument; that is, ATN(X)
returns “the angle whose tangent is X”. To gét arctangent in degrees,
multiply ATN(X) by 57.29578.

100 Y=ATN(B/C)

CDBL (x)

Returns a doubl ion of the The value
returned will contam 17 dngns but only the digits contained in the
argument will be significant.

CDBL may be useful when you want to force an operation to be
done in double-precision, even though the operands are single
precision or even integers. For example CDBL (I1%)/J% will return a
fraction with 17 digits of precision.

100 FOR i%=1 TO 25 : PRINT 1/CDBL(1%], : NEXT

| cortaan i)

mn

| coiaan

CINT (x)

Returns thetargest integer not greater than the-argyment. For -
example, CINT (1.5) returns 1; CINT(-1.5) returns -2. For the CINT
function, the argument must be in the range ~32768 to + 32767.

CINT might be used to speed up an operation involving single or
double-precision operands without losing the precision of the operands
(assuming you're only interested in an integer result).

100 K%=CINT(X#)+CINT{Y#)

COS (x)

Returns the cosine of the argument (argument must be in radians).
To obtain the cosine of X when X is in degrees, use COS(X*.0174533).

100 Y=COS(X+3.3)

CSNG (x)

Returns a singl isi P jon of the When the
argument is a double-precision value, it is retumned as six significant
digits with ““4/S rounding” in the least significant digit. So
CSNG(.6666666666666667) is returned as .666667;
CSNG(.3333333333333333) is returned as .333333.

100 PRINT CSNG{A#+B#)

EXP (x)
Returns the “natural exponential” of X, that is, X, This is the
inverse of the LOG function, so X=EXP(LOG(X)).

100 PRINT EXP{-X)

FIX (x)

Returns a tr d rep ion of the arg t. All digits to
the right of the decimat point are simply chopped off, so the
resultant value is an integer. For non-negative X, FIX(X)=INT(X).
For negative values of X, FIX(X)=INT(X)+1. For example, FIX(2.2)
returns 2, and FIX(-2.2) returns -2.

100 Y=ABS{A-FIX(A))

This statement gives Y the value of the fractional portion of A.

712

Page Was

Blank When
Provided

INT(x)

Returns an integer representation of the argufnent, using the largest
integer that is not greater than the argument. Argument is not
limited to the range -32768 to +32767. INT(2.5) returns 2:
INT(-2.5) returns -3: and INT(1000101.23) returns 100101.

100 Z=INT{A*100+.5)/100

Gives Z the value of A rounded to two decimal places (for non-
negative A).

LOG(x)

Returns the natural logarithm of the argument, that is,
logg(argument). This is the inverse of the EXP function, so
X=LOG(EXP (X)). To find the logarithm of a number to another
base b, use the formula log(X) = log,(X)/loge(b). For example,
LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

100 PRINT LOG({3.3*X)

RANDOM

RANDOM is actually a complete statement rather than a function.
It reseeds the random number generator. If a program uses the RND
function, you may want to put RANDOM at the beginning of the
program. This will ensure that you get an unpredictable sequence of
pseudo-random numbers each time you turn on the Computer,

load the program, and run it.

10 RANDOM

20 C=RND(6)+RND(6)

B8O GOTO 20 'RANDOM NEEDS TO EXECUTE JUST ONCE
RND(x)

Generates a pseudo-random number using the current pseudo-random
“seed number” (generated internally and not accessible to user).
RND may be used to produce random numbers between 0 and 1, or
random integers greater than 0, depending on the argument.

RND(0) returns a single-precision value betwsen 0 and |.
RND(integer) returns an integer between 1 and integer inclusive
(integer must be positive and less than 32768). For example.
RND(55) returns a pseudo-random integer greater than zero dnd
less than 56, RND(55.5) returns a number in the same range,
because RND uses the INTeger value of the argument.

100 X=RND(2): ON X GOTO 200,300

=

7/3

et |

SGN(x)

The “sign” tunction : raturas -1 for X negative, O for X zero, and
+| for X positive.

100 ON SGN(X)+2 GOTO 200,300,300

SIN(x)

Returns the sine of the argument (argument must be in radians).
To obtain the sine of X when X is in degrees, use SIN(X*.0174533).

100 PRINT SIN(A*B-8)

SQR(x)

Retumns the square roct of the argumeant. SQR(X) is the same as
X 4(1/2), only faster.

100 Y=SQR(X) 2-H} 2)

TAN(x)

Returns the tangent of the argument (argument must be in radians).
To obtain the tangent of X when X is in degrees, use
TAN(X*.0174533).

100 Z=TAN(2*A)

NOTE: A great many other functions may be created using the above
functions. See Appendix F, “Derived Functions”.

8/Special Features

LEVEL Il BASIC offers some unusual functions and
operations that deserve special highlighting. Some may
seem highly specialized; as you learn more about
programming and begin to experiment with machine-
language routines, they will take on more significance.
Other functions in the chapter are of obvious benefit
and will be used often (for example, the graphics
functions). And then there are a couple of features,
INP and OUT, that will be used primarily with the
TRS-80 Expansion Interface.

Functions, statements and operators described in this chapter:

Error-Routine Other Functions
Graphics: Functions: and Statements:
SET ERL INP
RESET ERR MEM
CLS PEEK
POINT Logical Operators: POKE

POS

AND ouT

OR USR

NOT VARPTR

SET(x,y)

Turns on the graphics block at the location specified by the
coordinates x and y. For graphics purposes, the Display is divided
up into a 128 (horizontal) by 48 (vertical) grid. The x-coordinates
are numbered from left to right, O to §27. The y~oordinates are
numbered from top to bottom, O to 47. Therefore the point at
(0,0) is in the extreme upper left of the Display, while the point
at (127,47) is in the extreme lower right corner. See the Video
Display Worksheet in Appendix E.

The arguments x and y may be numeric constants, variables or
expressions. They need not be integer values, because SET(x,y)
uses the INTeger portion of x and y. SET (x,y) is valid for:
0<=x<128

0<=y<48

Examples:

100 SET(RND(128)-1,RND(48)-1}

Lights up a random point on the Display.

100 INPUT X,Y: SET(X,Y)

RUN to see where the blocks are.

-

8/1

 1absanios 2

RESET(x,y)

Turns off a graphics block at the location specified by the coor-
dinates x and y. This function has the same limits and parameters
as SET(x.y).

200 RESET (X,3)

CLS

“Clear-Screen” — turns off all the graphics blocks on the Display
and moves the cursor to the upper left corner. This wipes out alpha-
numeric characters as well as graphics blocks. CLS is very useful
whenever you want to present an attractive Display output.

5 CcLs
10 SET(RND({128)-1.RND(48}-1)
20 GOTO 10

POINT(x,y)

Tests whether the specified graphics block is **on™ or “off™. If the
block is “‘on" (that is, if it has been SET), then POINT returns a
binary True (-1 in LEVEL I1 BASIC). If the block is “off”, POINT
returns a binary False (0 in LEVEL 11 BASIC). Typically, the
POINT test is put inside an IF-THEN statement.

100 SET(50,28) : IF POINT(30,28) THEN PRINT “ON" ELSE PRINT "OFF"

This line will always print the message, “ON", because POINT(50,28)
will return a binary True, so that execution proceeds to the THEN
clause. If the test failed, POINT would return a binary False, causing
execution to jump to the ELSE statement.

ERL

Returns the line number in which an error has occurred. This function
is primarily used inside an error-handling routine accessed by an

ON ERROR GOTO statement. If no error has occurred when ERL

is called, line number O is returned. However, if an error has occurred
since power-up, ERL returns the tine number in which the error
occurred. If error occurred in direct mode, 63535 is returned (largest
number representable in two bytes).

BTy

82

Example Program using ERL

s ON ERROR GOTO 1000

10 CLEAR 10

20 INPUT"ENTER YOUR MESSAGE";M$

30 INPUT"NOW ENTER A NUMBER";| N=1/N
40 REM REZST OF PROGRAM BEGINS HERE
999 END

1000 IF ERL=20 THEN 1010 ELSE IF ERL=30 THEN 1020

1005 ON ERROR GOTO 0

1010 PRINT "TRY AGAIN-KEEP MESSAGE UNDER 11 CHARACTERS"
1015 RESUME 20

1020 PRINT"FORGOT TO MENTION: NUMBER MUST NOT BE ZERO"
1025 RESUME 30

RUN the program. Try entering a long message; try entering zero
when the program asks for a number. Note that ERL is used in line
1000 to determine where the error occurred so that appropriate
action may be taken.

ERR/2+1

Similar to ERL, exceot ERR returns a value related to the code of the
error rather than the line in which the error occurred. Commonly used
inside an error handling routine accessed by an ON ERROR GOTO

statement. See Appendix B, “Error Codes.”

ERR/2+| = true error code
(true error code —1)*2=ERR

Example Program

10 ON ERROR GOTO 1000
20 DIM A(15) : 1=1

30 READ A(1)

a0 1=1+1: GOTO 30

50 REM REST OF PROGRAM

100 DATA 2,3,57,1,13

999 END

1000 IF ERR/2+1=4 RESUME 50
1010 ON ERROR GOTO 0

Note line 1000: 4 is the error code for Out of Data.

8/3

=

- |
INP(porf)
Retumns a byte-value from the specified port. The TRS-80 Expansion
Inte¥face is required 't6 use INP effectively (with usersupplied
peripheral hardware). There are 256 ports, numbereq 0-255. For
example
100 PRINT INP(50)
inputs a byte from port 50 and prints the decimal value of the byte.
MEM
Returns the number of unused and unprotected bytes in memory.
This function may be used in the Command Mode to see how much
space a resident program takes up; or it may be used inside the
program to avert OM (Out of Memory) errors by allocating less string
space, DIMensioning smaller array sizes, etc. MEM requires no
argument.
Example:
100 IF MEM < 80 THEN 900
110 DIM A(13)
Enter the command PRINT MEM (in Command Mode) to find out
the amount of memory not being used to store programs, variables,
strings, stack, or reserved for object-files.
OUT port, value
Ouputs a byte value to the specified port. OUT is not a function
buta plete in itself. It requires two t:
separated by a comma (no p hesis): the port destination and
the byte value to be sent,
Example:
ouT 250,10
sends the value *10” to port 250. Both arguments are limited to the
range 0-255.
OUT, like INP, becomes useful when you add the TRS-80 Expansion
Interface. See INP.

8/4

EEK(uddress)

t'ne .-\ppcn
and the Table of Function. ASCI1 and Graphies Codns (so you'H
know what the value at),

PEEK 1o examine object files, you'll also need a
microprocessor instruction set manual (one is included with the
TRS-80 Editor/Assembler Instruction Manual).

PEEK is valuzble for linking machine language routines with LEVEL
11 BASIC programs. The machine language routine can store informa-
tion in a certain memory location, and PEEK may be used inside
your BASIC program to retrieve the information. For example,

A = PEEK (17999)

returns the value stored at location 17999 and assigns that value to
the variable A,

Peek may also be used to retrieve information stored with a POKE
statement. Using PEEX and POKE ullows you to set up very compact,

-\ppgndl(to de 1ine the appropriate locations for this type of
storage. See POKE, USR.

POXE address, value

Loads a value into a specified memory location. POKE is not a
function but a stat it complete in itself. [t requires two arguments:
i must be

¢ & Memory Map in the
Appendix to see which ld(]rn\\ s you'd hike to POKE,

To POKE (or PEEK) an address above 32767, use the following
formula: =1 *(desired address - 32767) = POKE or PEEK address,

1022 PRI\T {ocations
there are 6 subdi . 10 we call each PRINT position a byte, then
the smaller boxes are bits. We know that there are ¥ bits per byte;

so what b one h 27 One is used to identify the byte
as not used. The remaining
6 bits contain zraphics or control code.

ther an ASCII,

8/5

PR SR IS SRRn Sos S Perotvee.

S, - R el AL s TS 1
We cun use POXE to turn on the entire PRINT position (6 bits) at
one time. When we use SET, only | bit is turned on. Therefore POKE
is about 6 times faster tian SET. The foitowing program demon—
strates this speed.
10 CLsS
20 FOR X=15360 TO 16383
30 POKE X, 191
40 NEXT
50 GOTO 50
RUN the program to see how fast the screen is “‘painted™ white.
(191 is the code for “all bits on™. 15360 to 16333 are the Video
Display memory addresscs.)
Since POKE can be used to store information anywhere in memory,
it is very important when we do our graphics to stay in the range
for display locations. If we POKE outside this range, we may store
the byte in a critical place. We could be POKEing into our pro-
gram, or even in worse places like the stack. Indiscriminate POKEing
can be disastrous. You might have to reset or power off and start
over again. Unless you know where you are POKEing — don't.
See PEEK, USR, SET, and Chapter 4, CHRS for background
material.
POS(x)
Returns a number from O to 63 indicating the current cursor
position on the Display. Requires a “"dummy argument” (any
numeric expression).
100 PRINT TAB(40) POS(0)
prints 40 at position 40. (Note that a blank is inserted before the
**4" to accommodate th - sign; therefore the “4” is actually at position
41.) The “0” in “POS(C " is the dummy argument.
100 PRINT "THESE" TAB(POS(0)+5) "WORDS" TAB{POS(0)+5) "ARE";
110 PRINT TAB(POS(0)+5) "EVENLY" TAB(POS(0)+3) "SPACED"
RUN
THESE WORDS ARE EVENLY SPACED
READY
>—
| e T SERRTET 3

8/6

USR (x)

Calls a machine language subroutine and passes the argument to the
subroutine (you may not need it, in which case it is a dummy
argument). Such a subroutine could be loaded from tape, or created
by POKEing microprocessor instructions into the appropriate
memory locations. To use the USR function, you should be familiar
with the hine-] progr ing (as explained in the TRS-80
Editor/Assembler Instruction Manual or any Z-80 Programming
Manual). Playing around with the USR function can be disastrous to
any programs you may have resident in the TRS-80; so do some
studying before you attempt to use it.

There is only one allowable USR call in LEVEL Il BASIC. In LEVEL
11 DISC BASIC, there will be up to 10: USR® through USR9.

Example:
100 X=USR{N}

would cause the Computer to branch to the routine beginning at
the location POKEd into the USR(N) addresses 16526-16527.

is also stored at 2687 as a 2-byte integer. Upon return from the
routine, the variable X would be given the value passed back from
the routine. [f no value is passed, X is assigned the value of the
argument N.

N must be an integer between -32768 and 32767.

To create a machine language subroutine for access by USR, you
must protect an area in high memory. (See Appendix D, **Memory
Map™). First dctermine how many bytes your routine will require
Then subtract that number from your Computer’s highest Memory
address (depending on whether your TRS-80 has 4K or 16K bytes
of memory). The resultant number will be the address where your
protected memory should begin. Turn on the TRS-80, and answer
the MEMORY SIZE guestion by entering the address where
protected memory should begin. Addresses above that number will
now be reserved tor machine language data and routines.

Load the machine language routine, using POKE or via the cassette
interface using the SYSTEM command (see Chapter 2, SYSTEM).
Then, at the point where you want your BASIC program to
branch to the machine language routine, insert a statement which
calls USR(0). For example,

50 PRINT USR(N)

or

50 A =USR(I%)+B

Ta pass the argument to the subroutine, the subroutine should
immediately execute a CALL 0A7F(hex) i;e., call 2687(dec).

8/7

B

There are two ways to return to your BASIC program rom the
machine-language subroutine:
-If you don't wish to pass any vl
back to the BASIC 2ram, a m
instruction can be usc

broutine

RET

2) To return a value, toad the value into the HL reaister pair
as 3 two-byte signed integer and exccute 2 JUMP to
location 0A9A (HEX) {2714 (DEC)]. HL will be returned
as a signed 2-byte integer.

The last thing you need to do is tell your BASIC program what
address to branch to in the machine language routine. This two-byte
address must be POKEd into memory locations 16526 and 16527.
POKE the least significant byte into the lower (16526) memory
location.

For example, if your routine begins at 32000: in hexadecimal
this is 7D00. Therefore we POKE 00 (HEX) into 16526, and

7D (HEX) into 16527. Since POKE requires arguments in decimal
form, we use:

POKE 16526,0 : POKE 16527,208
(208 decimal = 7D hex).

After you have executed the above line, when you use the USR(0)
function, the Computer will branch to the instruction stored at
32000.

Note: locations 16526-16527 contain the address of the [llegal
Function Cail routine unless moditied by POKE.

USR routines are automatically allocated up to 8 stack levels or

16 bytes (a high and low memory byte for each stack level). If you
need more stack space, you can save the BASIC stack pointer and
set up your own stack. However, this gets complicated; be sure you
know what you're doing. See Chapter 2, SYSTEM, and this chapter,
PEEK, POKE.

VARPTR (variable name)

Returns an address-value which will help you locate where the variable
name and its value are stored in memory. If the variatle you specify has
not been assigned a value, an FC error will occur when this tunction

is called.

1f VARPTRUnteger variable) returns address K:

Address K contains the feast sigmificant byte (LSB) of 2-byte in
(two’s complement form).

Address K+1 contains the most significant byte (MSB) of intzger K.

=T |

8/8

1f VARPTR(single precision variable) returns address K:
(K)* = LSBofvalue

(K+1) = Next most sig. byte (Next MSB)

(K+2) = MSB

(K+3) = exponent of value

If VARPTR(double precision variable) returns K:
(K) = LSBof value
(K+1) = Next MSB

(K+...)= Next MSB
(K+6) = MSB
(K+7) = exponent of value

IF VARPTR(string variable) retumns K:

(K) = length of string

{K+1) = LSB of string value starting address
(K+2) = MSB of string value starting address

For single and double precision values. the number is stored in
normalized exponeatial form, so that a decimal is assumed before
the MSB. 128 is added to the exponent. Furthermore, the high bit
of MSB is used as a sign bit. See examples below.

Examples:

A! = 4 will be stored as follows:

4 = 10 Binary, normalized as .1E2

So exponent of A is 128+2 =130

MSB of A is 10000000;

however, the high kit is changed to zero since the value is positive.
So A!is stored as

Exponent MSB Next MSB LSB
130 0 0 0

Al'=-.5 will be stored as

Exponent MSB Next MSB LSB

- 128 128 0 0

* (K) signifies “contents of address K™

8/9

A! = 7 will be stored as

Exponent MSB Next MSB LSB
131 96 0 0

Al=-7:

Exponent MSB Next MSB LSB
131 224 0 0

Zero is simply stored as a zero-exponent. The other bytes are
insignificant.

Logical Operators

In Chapter 1 we described how AND, OR and NOT can be used with
relational expressions. For example,

100 IF A=C AND NOT (B >40) THEN 60 ELSE 50

AND, OR and NOT can also be used for bit manipulation, bitwise
comparisons, and Boolean operations. In this section, we will
explain how such operations can be implemented using LEVEL I1
BASIC. However, we will not try to explain Boolean algebra,
decimal-to-binary conversions, binary arithmetic, etc. If you need
to learn about these subjects, Radio Shack’s Understanding Digital
Computers (Catalog Number 62-2027) would be a good place to
start.

AND, OR and NOT convert their arguments to sixteen-bit, signed
two's-complement integers in the range -32768 to +32767. They
then perform the specified logical operation on them and return a
result within the same range. If the arguments are not in this range,
an “FC” error results.

The operations are performed in bitwise fashion; this means that
each bit of the result is obtained by examining the bit in the same
position for each argument.

The following truth tables show the logical relationship between
bits:

OPERATOR ARGUMENT 1 ARGUMENT 2 RESULT

AND 1 1 |

0 1 0

1 0 0

0 "] 0
OPERATOR ARGUMENT 1 ARGUMENT 2 RESULT
OR I 1 1

1 0 1

0 ! 1

0 Y] 0
|- >t 0

8/10

OPERATOR ARGUMENT RESULT
NOT i 0

9 1
EXAMPLES:
(In all of the examples below, 1eading zeroes on binary numbers are

not shown.)

63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary
10GCO0, the result of the AND is binary 10000 or 16.

15 AND 14=14)5 equals binary 1111 and 14 equals binary 1110,
50 15 and 14 equals binary 1110 or 14.

-1 AND 8=8 -1 equals binary 1111111111111111 and 8 equals
binary 1000, so the resuit is binary 1000 or 8
decimal.

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the

result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

4 0R 2=6 Binary 100 OR'd with binary 10 equals binary 110,
or 6 Jdecimal.

I0OR 10=10 Binary 1010 OR"d with binary 1010 equals binary
1010, or 10 decimal.

-1 OR -2=-1 Binary 1TLLTTTEIIT11101 (=1) OR'd with binary

FITIYELTERLN 1110 (<2) equals binary
PLLTLLLLLLL L, or =1,
NOT 0=-1 e bit complement of binary O to 16 places is six-
noves (1TULTELTLLLTIETDY or -1, Also NOT
NOT X NOT X is equal to =(X+1). This is because to form
tl hit twa' mple number,
you teke 2t (one’s fat ind add one.
NOT 1=-2 flis

iy equal to ~(1+1) or

A tvpical use of the
inpert ports which re
requires the TRS-80 &

2rators is to tost bits set in the TRS-80"s

8/11

Bit position 7 is the most significant bitof a t
the least significant.

, while position 0 is

For instance, suppose bit 1 of [0 port 5is 0 n th rto Room
X is closed, and 1 if the door is open. The foliowing program will
print “Intruder Alert” if the door is opened:

10 IF INP(5) AND 2 THEN PRINT “INTRUDER ALERT":GOTO 160
20GOTO 10

See Chapter 1, ““Logical Operators™.

8/12

S e S T S T T

9/Editing

LEVEL I users ¢

long program 1

ndoubtedly spent lots of time retyping

X ecause of a typo, or maybe just
Once a line had been enterad,
er the line — without starting

no way to a
all over and retyping it.

LEVEL II’s editing features eliminate much of this
extra werk. In fact, it’s so easy to alter program lines,
you'il probably be able to do much more experiment-
ing with multi-statement lines, complex expressions,
etc.

Commands, subcommands, and special function keys described in
this chapter:

EDIT L np
x ne
nSpace-Bar ! nsc
n - A nKc
SHIFT 4 E
)
H
EDIT line number

This command puts you in the Edit Mode. You must specify which
line you wish to edit, in one of two ways:

EDIT line-number {1335 Lets you edit the specified line.
If line number is not in use,

or an FC error occurs

EDIT. Lets vou edit the current pro-

gram last line enterad or
altered or in which an error has
occurred.

For example, type in and {YT733] the following line:

100 FOR | =1 TO 10STEP.3: PRINT I, 142,143 : NEXT

This line will be used in exercising all the Edit subcommands de-
scribed below.

Now type EDIT. and hit [T3{Z} . The Computer will display:
100 _

N

You are row ia the Edit Mode and may

editing line 1C0.

ENTER key
Hitting @I while in the Fdit Mode causes the Computer to
record all the changes you® if any)in tf rrent line, and

returns you to-the Cor

nSpace-bar

In the Edit Mode, hitting the Space-bar moves the cursor over one
space to the right and displays any character stored in the preceding
position. For example, using line 100 entered above, put the
Computer in the Edit Mode so the Display shows:

100 _

Now hit the Space-Bar. The cursor will move over one space, and
the first character of the program line will be displayed. If this
character was a blank, then a blank will be displayed. Hit the Space-
Bar until you reach the first non-blank character:

100 F_

is displayed. To move over more than one space at a time, hit the
desired number of spaces first, and then hit the space-bar. For
example, enter 5 and hit Space-bar, and the display will show some-
thing like this (may vary depending on how many blanks you
inserted in the line):

100 FOR Is_

Now type 8 and hit the Space-bar. The cursor will move over
8 spaces to the right, and 8 more characters will be display=d.

n «(Backspace)
Moves the cursor to th
the cursor moves bac
all characters in its “path™ are erased
not deleted from the program line. Fo;
used nSpace-Bar so that the Display shows:

100 FOR1=1TO 10 _
type 8 and hit the - key. The Display will show something like this:

100 FOR I=_ (will vary depending on number of blanks in
your line 100)

| vipomine

9/2

SHIFT 4

Hitting SHIFT and) keys together effects an escape from any of the
Insert subcommands listed below: X, I and H. After escaping from

an Insert subcommand, you'll still be in the Edit Mode, and the cursor
will remain in its current position, (Hitting is another way
to exit these Insert subcommands).

L (List Line)
When the Computer is in the Edit Mode, and is not currently
ing one of the. ds below, hitting L causes the

remainder of the program line to be displayed. The cursor drops
down to the next line ¢f the Display, reprints the current line
number, and moves to the first position of the line. For example,
when the Display shows

100 o

hit L (without hitting [IT{A] key) and line 100 will be displayed:

100 FOR i=1 TO 10 STEP .5 : PRINT 5, 142, 143 : NEXT
100

This lets you look at the line in its current form while you're doing
the editing.

X (End of Line and Insert)

Causes the rest of the current line to be displayed, moves cursor to
end of line, and puts Computer in the Insert subcommand mode so
you can add material to the end of the line. For example, using
line 100, when the Display shows

100 _
hit X (without hitting ENIT3i]) and the entire line will be dis-

played; notice that the cursor now follows the last character on the
line:

100 FOR I=1 TO 10 STEP.S : PRINT 1,142,143 : NEXT _

We can now add another statement to the line, or delete material
from the line by using the -+ key. For example, type

: PRINT"DONE" at the end of the line. Now hit .

If you now type LIST 100, the Display should show something
like this:

100 FOR I=1 TO 10 STEP .5 : PRINT 1,142,143 : NEXT : PRINT*DONE"

| ot oo R T " yows 9% o 0 NP VT 07 AvsAMERED. |
93

BRI -

I (Insert)

Allows you.to insert-material beginning at the current eursor position
on the line. (Hitting ~ will actually delete material from the line in
this mode.) For example, type and [@11333] the EDIT 100 command,
then use the Space Bar to move over to the decimal point in line 100.
The Display will show:

100 FOR I=1 TO 10 STEP .

Suppose you want to change the increment from .5to .25. Hit the [
key (don’t hit @YTT;]) and the Computer will now let you insert
material at the current position. Now hit 2 so the Display shows:

100 FOR I=1 TO 10 STEP .2

You've made the necessary change, so hit SHIFT § to escape from
the Insert Subcommand. Now hit L key to display remainder of line
and move cursor back to the beginning of the line:

100 FOR I=1 TO 10 STEP .25 : PRINT 1, 142, 143 : NEXT : PRINT "DONE"
100 _

You can also exit the Insert subcommand and save all changes by
hitting [@YIAIZ] . This will return you to Command mode.

A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and cancels
editing changes already made. For example, if you have added, deleted,
or changed something in a line, and you wish 1o go back to the
beginning of the line and cancel the changes already made: first hit
SHIFT 4 (to escape from any subcommand you may be executing);
then hit A. (The cursor will drop down to the next line, display the
line number and move to the first program character.

E (Save Changes and Exit)

Causes Computer to end editing and save all changes made. You
must be in Edit Mode, not executing any subcommand, when you
hit E to end editing.

Q (Cancel and Exit)

Tells Computer to end editing and cancel alf changes made in the
current editing session. If you've decided not to change the line, type
Q to cancel changes and leave Edit Mode.

9/4

= SRR T

5o

H (Hack and Insert)

Tells Computer to delete remainder of line and lets you insert
material at the current cursor position. Hitting e will actually delete
a character from the line in this mode. For example, using line 100
listed above, enter the Edit Mode and space over to the last state-
ment, PRINT"DONE”, Suppose you wish to delete this statement
and insert an END statement. Display will show:

100 FOR I=1 TO 10STEP.25: PRINT |, 142,143 : NEXT : _

Now type H and then type END. Hit key. List the line:

100 FOR I=1 TO 10: STEP .25.: PRINT 1, 1}2, 1} 3 : NEXT : END
should be displayed. -

nD (Delete)

Tells Computer to delete the specified number n characters to the
right of the cursor. The deleted characters will be enclosed in
exclamation marks to show you which characters were affected.

For example, using line 100, space over to the PRINT command
statement:

100 FOR I=1 TO 10: STEP .25 : _

Now type 19D. This tells the Computer to delete 19 characters to
the right of the cursor. The Display should show something like this:

100 FOR =1 TO 10: STEP .23 : IPRINT |, 142, 5§ 3 :1_

When you list the complete line, you'll see that the PRINT statement
has been deleted.

nC (Change)

Tells the Computer to let you change the specified number of charac-
ters beginning at the current cursor position. If you type C without a
preceding number, the Computer assumes you want to change one
character. When you have entered n number of characters, the
Computer returns you to the Edit Mode (so you're not in the nC
Subcommand). For example, using line 100, suppose you want to
change the final value of the FOR-NEXT loop, from “10" to “15".
In the Edit Mode, space over to just before the “0” in “10™.

100 FOR 1=1 TO 1

Now type C. Computer will assume you want to change just one
character. Type 5, then hit L. When you list the line, you’ll see that
the change has been made.

100 FOR =1 TO 13 STEP .25 ; NEXT : END

would be the current line if you've followed the editing sequence in
this chapter.
-

oo e

9/s

e —

nSc (Search)

Tells the Computer to search for the nth occurrence of the character
¢, and move the cursor to that position. If you don’t specify a value
for n, the Computer will search for the first occurrence of the speci-
fied character. If character ¢ is not found, cursor goes to the end of
the line. Note: The Computer only searches through characters to
the right of the cursor. -

For example, using the current form of line 100, type EDIT 100

) and then hit 2s: . This tells the Computer to search
for the second occurrence of the colon character. Display should
show:

100 FOR I=1 TO 15 STEP .25 : NEXT

You may now execute one of the subcommands beginning at the
current cursor position. For example, suppose you want to add the
counter variable after the NEXT statement. Type [to enter the
Insert subcommand, then type the variable name, I. That’s all you
want to insert, so hit SHIFT 4 to escape from the Insert subcom-
mand. The next time you list the line, it should appear as:

100 FOR =1 TO 15 STEP .25 : NEXT 1: END

nKc (Search and “Xill”’)

Tells the Computer to delete all characters up to the nth occurrence
of character ¢, and move the cursor to that position. For example,
using the current version of line 1C0, suppose we want to delete the
entire line up to the END statement. Type EDIT 100 ((TSI),
and then type 2K: . This tells the Computer to delete all characters
up to the 2nd occurrence of the colon. Display should show:

100 IFOR I=1 TO 15 STEP .25 : NEXT I

The second colon still needs to be deleted, so type D . The Display
will now show:

100 IFOR I=1 TO 15 STEP .25 : NEXT I1l:[_
Now hit EYT{E:] and type LIST 100 ().
Line 100 should look something like this:

100 END

9/6

10/Expansxon Interface

Interface is available for the TRS-80

LEVEL I Computcr. This interface will allow the use
of additional Input/Qutput devices. There is also a
provision for adding RAM memory. The Interface will
allow four major additions to the TRS-80:

I. An additional cassette deck

2. A TRS-80 Line Printer

3. Up to four Mini-Disks

4. Up to 48K bytes of RAM Memory

(32K in the Expansion Interface)

Thiese devices are available from your Radio Shack
store or dealer. To set up the Expansion Interface and
any of the external devices, see the Expansion Interface
instructions.

‘When the Expansion Interface is hooked up to the TRS-80, the Com-
puter assurnes that a Ml.m-Dzsk is intesfaced. The Mini Disk will allow

the use of additi ds and listed later. Even if
you don’t have a Mini Disk, the Computer will assume you do (because
of the of the Disk C {ler) and will try to input tpeclll
instructions from the Disk C ler. Theref to use the [

without a Mini Disk, hold down the BREAK key as you tum on the
TRS-80. This will override the mini-disk mode and allow normal
LEVEL !l operation. Whenever you need to press the Reset button,
you must also hold down the BREAK key.

Dual Cassettes
The use of two cassettes will allow a much more efficient and
manner of up g ddta stored on tape. For example,

if you have payroll data slorzd on tape, the information can be
read in one item at a time from cassette #1 then changed or added
and written out on cassette #2, one item at a time. The routine might
look like this:

10 INPUT #-1,A,B.C.D

20 PRINT "MAKE CORREGCTIONS HERE: RETYPE LINE™

30 INPUT A,B.C.D

40 PRINT “THE LINE NOW READS:" A,8,C,D

80 PRINT "STORING ON TAPE #2...

60 PRINT #-2, A,B,C.D

70 GOTO 10

This is a very simple application; however, very powetful routines
can be constructed to allow input and output of data using two tapes
simultaneously.

s cnaer

See Chapter 3, PRINT.
Codes

Several codes are used to control the output of the line printer. The
codes and their functions are listed below. The CHRS function is
used to call up these function codes. For example:

PRINT CHRS (10)
will generate a line feed.

CODE FUNCTION
10 line feed with carriage return
11 line feed with carriage return
12 Move carriage to top of form (page)
13 carriage return

NOTE: At the end of a line, a line feed is automatically generated
unless a semi-colon is used at the end of the PRINT statement.

The line printer will print 6 lines per inch and 66 lines per page. If
this format is not suitable, the number of lines per page can be
changed by POKEing the new number of lines into memory
location 16424.

B
Example:
POKE 16424, 40

This instructs the Line Printer to print 40 lines per page.

Mini-Disks — (LEVEL II DISK BASIC)

The TRS-80 Mini Disk System is a small version of a floppy disk. The
disk allows vast file storage space and much quicker access time than
you get with tape storage. Disc 0 will contain about 80,000 bytes

of free space for files. Each additional disk will have 89,600 bytes of
file space. The disk system has its own set of commands which allow
manipulations of files and expanded abilities in file use. The TRS-80
Mini Disk System allows both sequential and random access. The
disks will also allow use of several additional BASIC commands and
functions:

Commands:
CLOSE LSET PUT
FIELD NAME RSET
GET OPEN MERGE
KiLL PRINT LOAD
SAVE
| o 0

10/3

4 B -+ aeot AR |
I/O Functions

cvp LOF

cvi MKDS

cvs MKIS

EOF MKSS$

Loc DSKF
Additions to LEVEL II
Ten UsR calls — USRQ through INSTR (performs function of
USR9 INSTRING subroutine
&H (hex constants) =~ see Chapter 4)
&0 (octal constants) TIMES (Date and 24-Hr.
DEFUSR Real-Time Clock.)
LINE INPUT DEF FN (User Defined Functions)
MID$ (on left side of equation)
For expl of these ds fi see the TRS-80
Disk Operating System Manual.
Expansion of RAM Memory
The TRS-80 Expansion Interface has provisions for adding extra
RAM memory. This is done by adding RAM memory chips. You
can add up to 32,768 additional bytes of memory. For price
information and installation, see your Radio Shack store or dealer.

PRI 1

10/4

11/Saving Time and Space

Most LEVEL I programs are faster and take up less
memory space than their LEVEL I counterparts.
But even with its inherently more efficient features,
LEVEL Il can be further streamlined by following
a few simple guidelines when constructing your
program.

Saving Memory Space

1) When your program is operating properly, delete all unnecessary
REM statements from your ruaning version.

2) Do not use unnecessary spaces between statements, operators,
etc.

3) When possible, use multiple-statement program lines (with a
colon between each two statements). Each time you enter a new line
number it costs you S bytes.

4) Use integer variables whenever possible, for example,
FOR (% =17TO 10

Integers take only two bytes. Single precision takes 7 and double
precision takes [1 bytes.

5) Using subroutines will save program space if the operation is
called from different places several times. If a routine is always called
from the same place, use unconditional branches (GOTO’s). Each
active GOSUB takes 6 bytes: a GOTO takes none at Run time.

6) Structure your calculations so as to use as few parentheses as
possible (refer to Chapter 1, " Arithmetic Operators™). It takes

4 bytes to process parentheses. And since these operations inside
parentheses are done first, the result of each parenthetical
expression must be stored (this takes 12 bytes).

7) Dimension arrays sparingly. When you set up a matrix, the
Computer reserves 11 subscript addresses for each DIMension, even
if the space is not filled. Use the zero subscripted elements, since
they are always available.

8) Use DEF statements when you will be working with values
other than single precision (strings. integers and double precision).
A DEF statement takes 6 bytes but this is made up for fairly quickly
since you don't need to use type declaration characters with the
variable names.

111

Speeding Up Execution

The speed at which a program is processed will depend on the com-
plexity of the operations and the number of instmuctions. In most
simple programs, speed will not be a factor. It will seem as though
the answer is returned the moment you enter RUN. However,

a3 you begin writing longer and more intricate programs, speed will
become a significant factor. Here are some suggestions to guide you
in designing speedier programs.

1} Deleteall y lines in the program (REM stat: t
etc.)

2), Combine multi-statement program lines when practical.

3). Use variables rather than constants in operations (very
important), Your TRS-80 normally operates using floating decimal
point values. It takes a lot Jess time to access a variable than to con-
vert a constant to floating pomt representation. For example: if you
will use 7 2 lot in a program, define ¥ as a variable (PI=3.14159)
and use the variable (PI) in the operations.

4) Use POKE graphics. This can speed up your graphics displays
by a factor of 6.

5) Define the most commonly used variables first. When a variable
is defined it is located at the top of the variable table. The second
will be just below that. When variables are accessed, the table will be
searched to find the variable. Therefore, you will save time by
locating frequently used variables at the top of the table (by defining
them first). The Computer will not have to look as far to find them.
6) Use integer variables, especially in FOR-NEXT loops, when
possible. This is most important of all.

ry e |
A/Level 11 Summary
Special Characters and Abbreviatons
Command Mode
EnE Return carriage and interpret command
- Cursor backspace and delete last character typed
SHIFT - Cursor to beginning of logical line; erase line
' Linefeed
St delimiter; use b ts on same logical line
> Move cursor to next tab stop. Tab stops are at positions
0.8, 16, 24, 32, 40, 48, and 56.
SHIFT » Convert display to 32 characters per line
CLEAR

Execute Mode

Clear Display and convert to 64 characters per line

SHIFT @
BREAK

[ENTER]

Pause in exccution; frecze display during LIST
Stop execution

Interpret data entered from Keyboard with INPUT statement

Abbreviations
? Use in place of PRINT.
’ Use in place of :REM
“Current line™; use in place of line number with LIST, EDIT, etc.
e - —— |

A/l

Type Declaration Characters

Character Type Examples

S String AS, 228

% Integer A1%, SUM%

! Single-Precision BI, NIt

» Double-Precision Az, 1/3%

D Double-Precision (exponential notation) 1.23456789D-12
E Single-Precision (exponential notation) 1.23456E+30
Arithmetic Operators

+ add - subtract * multiply / divide

4 exponentiate (e.g.,2 4 3=8)

String Operator

+ concatenate (string together) - 22
Relational Operators

Symbol ing in pressi in string exp:

< is less than precedes

> is greater than follows

= is equal to equals

<= or =< is less than or equal to precedes or equals

>= or => is greater than or equal to follows or equals
<> or >< does not equal does not equal
| ;oo X " |

A2

Order of Operations (operators on same line have same precedence)

A (Exponentia
~{Negation)
.

+, -

Relational opzrators

NOT

AND

OR

Commands

Command Function Examples

AUTO rmunnn Turn on autematic AUTO
line numbering AUTO 10
Peginning with AUTO 5.5
mm. using incre- AUTO .,10
ment of nn,

CLEAR Set numeric vari- CLEAR
ables to zero,
strings to null.

CLEAR 7 S:measCLEAR CLEAR 500
but 2iso sets aside CLEAR MEM/4
n bytes for strings.

CONT Continue after CONT
BREAK or STOP
in exceution,

DELETE mm-nn Delete program DELETE 100
iines from line DELETE 10-50
run to line nn. DELETE .

EDIT mm Enter Edit Mode EDIT 100
for line EDIT.
Fdit Mod
commands below,

LIST mm-nn List all program LIST
lings from mm to LIST 30-60
nn. LIST 30-

LIST -850
LIST.

A3

NEW Delete entire pro- NEW
nd r i

RUN mm RUN
25t RUN 55
SYSTEM Sze Chapter 2
file from cassette,
TROFF Turmn off Trace TROFF
TRON Tum on Trace TRON

Edit Mode Subcommands and Function Keys

Subcommand/Function Key Function

ENTER End editing and return to Command Mode.

SHIFT 4 Escape from subcommand and remain in Edit Mode.
nSpace-Bar Move cursor 7 spaces to right.

n - Move cursor a spaces to leflt.

L

List remainder of program line and return to beginning
of line.

X List

2 of p move cursor to end of
and start Insert subcommand.

1 uence of characters at current
cursor position; use Escape to exit this subcommand.
A Cancel changes and return cursor to beginning of line.
and retam to Command
Q End editing, cancel all changes made and retum ta
Commuand Mode
e R |

A/4

| srrremmmmmmany ¢ LT

H crof line and insert £
fscupe to exit this subcor ind.
nD
s0T position,
nC } 2 (or replace) the spec number of characters
n using the next n# characters entered.
nSc Move cursor to nth occurrence of character ¢, counting
from current cursor position.
nKe Delete all characters from current cursor position up to
nth occurrence of character ¢, counting from current
cursor position.
Input/Output Statements
Statement* Function Examples
PRINT exp Output to Display PRINT AS
the vajue of PRINT X+3
Exp may PRINT "D=
neric
Comma serves as 4 pRINT 1,2,3.4
PRINT mo PRINT * 2
PRINT 1,,2
PRINT X;'=ANSWER"
PRINT X:¥ Z
PRINT "ANSWER [S"
nch ttems
N Y . |

—
PRINT@n PRINT modifier; PRINT @ 540,"CENTER"
begin PRINTirg at PRINT @ N+3,X*3
specified display
position n.
TABn Print modifier: PRINT TAB(N) N
moves cursor to
specified Display
position n (expras-
sion).
PRINT USING string;exp PRINT format PRINT USING AS;X
specifier: output PRINT USING “#.#':Y+Z
exp in form speci-
fied by string field
(see below).
INPUT “‘message’’;variable Print message™(if INPUT"ENTER NAME':AS
any) and await INPUT"VALUE”: X
input from Key- INPUT"ENTER NUMBERS" ;XY
board. INPUT A,B,C.DS
PRINT »-1 Output to PRINT #—1,A,8,C,D$
Cassette #1.
INPUT #-1 Input from INPUT #—1,A,B,C,D$
. Cassette #1.
DATA item list Hold data for access DATA 22,33,11,1.2348
by READ state- DATA “HALL","SMITH","DOE"
ment.
READ variable list Assign value(s) to READ A,A1,A2,A3
the specified vari- READ A$,8$,C$.0
able(s), starting
with current DATA
element.
RESTORE Reset DATA point- RESTORE
er to first item in
first DATA state-
ment.
| ot e eyt i o aive 9900 * |

Field Specifiers for PRINT USING statements

Numeric Character Function Example

* Numeric field (one ===
digit per =),

Decimal point s s
position.

+ Print leading or +2 ses
trailing sign (plus ERET 2
for positive num- —# . wns
bers, minus for s aum_
negative numbers).

- Print trailing sign #2s s2—
only if value print-
ed is nezative.

e Fill leading blanks **#s# #=
with asterisk.

S$ Place dollar sign SSsans ue
immediately to left
of leading digit.

*es Dollars sign to left **Ssssa s
of leading digit and
fill leading blanks
with asterisks.

(XYY Exponential format, #.sz=s==} § 4 §

String Character

with one significant
digit to left of
decimal.

Function Example

Tspacese

Single character. !

String with length = 7%
equal to 2 plus

number of spaces
between 7% symbols.

Al

SN |

Program Statements

S atement
'

Function

Examples

(1'ype Definition)
DEFDBL lerter list or range

DEFINT letter list or range

DEFSNG letter list or range

DEFSTR letter list or range

(Assignment and Allocation)
CLEAR n

DIM array(dim=1, . . . dim»k)

Define as double-
precision all
variables beginning
with specitied
letter; letters or
range of latters.

Define as int:
all variables -
ning with specified
letter, letters or
range of letters.

Define as single-
precision all vari-
ables beginning
with specified
letter, letters or
range of letters.

Defige as string all
variables beginning
with specified let-
ter, letters or
range of letters.

Set aside specified
number of bytes
n for string storage.

Allocate storage for
k-dimensional array
with the specified
size per nsion
dim=1, dim=2, .
etc. DIM may be
followed by a list
of arrays szparated
by commas.

DEFDBLJ
DEFDBL X,Y.A
DEFDBL A-EJ

DEFINT A
DEFINT C,E,G
DEFINT A-K

DEFSNG L
DEFSNG A-L, Z
DEFSNG P,R,A-K

DEFSTR A,B.C
DEFSTR $,X-Z
DEFSTR M

CLEAR 750
CLEAR MEM/10
CLEARO

DIM A(2,3)

DIM At1{15), A2(15)
DIM B{X+2].C(JK)
DIM T(32.3,5)

A/8

E 1

i
Statement Function Examples
LET variable=expression Assign value of LET AS="CHARLIE"
expression to LT B1=CY
variable. LET is LET A%=l#
optional in LEVEL
11 BASIC.

(Sequence of Execution)

END End execution, 99 END
return to Command
Mode.

STOP Stop execution, 100 STOP

print Break message
with current line
number. User may
continue with
CONT.

GOTO line-number Branch to specified goro 100
line-number.

GOSUB line-number Branch to sub-
routine beginning at
line-number.

GOSUB 3000

RETURN Branch to statzment RETURN
following last—
executed GOSUB.

ON exp GOTO lines=1, . . ., line=k Evaluate express ON K+1 GOTO 100,200,300
sion:if INT{exp)
equals one of the
numbers | through
k. branch to the
appropriate line
number. Otherwise
20 10 next state-
mant

ON exp GOSUB line=1.. . . line=k SameasON . ..
GOTO exvept
branch is to sub-
routine beginning
atlines] lincs2,

Lorline =k,
Jepending on
2XD.

ON J GOSUB 330,7000

A/

Statement

Function

Examples

- e
e ettt o]

FOR sar=exp TO expSTLP exp

NEXT variable

ERROR (code)

ON ERROR GOTO line-number

TOpen o FOR-NEX

taop. STEP
tiona
increment is
used. See Chapter 4

Close FOR-NEXT
loop. Var: 4y

To

4 toops

avarable
used. Sce

o

wpter 4.

Simulate the error
specified by code
(see Error Code
Table).

NEXT
NEXT

1 TO 50 5TEP 1.5
L5Jh TO K- 1%

NEXT ILLK

list may be

ERROR (14)

If an error occurs in ON ERROR GOTO 999

subsequent program
lines, branch to

error routine begin-
ning at line-number.

Retumn from error
rouline to line
specified by a. [f n

fied, return to state-

ment containin

“NEXT™, return to

statemeant following
error-statement.

dom

REMurk indicater;
ignore rest of line

RESUME n

error. M s
RANDOM Reseeds ra
REM
o

RESUME
RESUME 0
RESUME 100
is zero or not speci- RESUME NEXT

RANDOM

REM

A 1S ALTITUDE

FERVNTUTFUNCY PRI PV |

Statement Function Examples

(Tests — Conditional Statements)
IF exp—1I THEN statement—1 ELSE srarement=2
Tests exp--1: IF A=0 THEN PRINT "ZERO"
I xecute ELSE PRINT "NOT ZERO™
statement -1 then
jump to next pro-
gram line (unless
statement - | wasa
GOTO).

If exp~1 is False,
jump directly to
ELSE statement
and execute sub-
sequent statements.

(Graphics Statements)

CLS Clear Video cLs
Display.

RESET(x.)) Turn off the graph- RESET(8+B,11)

ics block with hori-

zontal coordinate x

and tical coordi-

nate 3. 0<=X <28

and 0< =Y <43

SET (x.»)

SET(A*2,8+C)
ics Block sy
by coordinates x
and y. Same argu-
ment limits as

RESET.

(Special Statements)

POKE location value Load vaiue into POKE 15635.34
memory location POKE 17770.A+N
(both arguments in

| form)

alue <=2

OLUT port.value Sand value to port OUT 255,10
(both arguments OUT 55.A
between O and 255

[cicaocthans, vl BRI : . 5. AR . |

String Functions

Function Operation Examples

ASC(string) Returns ASCII code of first character ASc(BS)
in string argument. ASC("'H")

CHRS(code exp) Retumns a one-character string defined CHR$(34)
by code. If code specities a control CHRS${1)
function, that function is activated.

FRE(string) Returns amount of memory available FRE(AS)
for string storage Argument is a
dummy variable.

INKEYS Strobes Keyboard and returns a one- INKEYS
character string corresponding to key
pressed during strobe (null string if’
no key is pressed).

LEN(string) Returns length of string (zero for null LEN{AS$+BS)
string). LEN{"HOURS")

LEFTS(string,n) Returns first # characters of string. LEFTS${AS.1)

LEFTS(L1$+CS,8)
LEFTS(AS,M+L)

MIDS(string,p,n,) Returns substring of string with length MID${MS,5,2)

n and starting at position p in string, MID$(M$+BS,P,L—1)

RIGHTS(string.n) Retums last # characters of string. RIGHTS(NAS,7)

RIGHTS$(ABS M2)

STRS(numeric exp) STRS(1.2345)
Returns a string representation of the STRS$(A+B*2)
evaluated argument.

STRINGS(n,char) Returns a sequence STRINGS(30, ".")
of n char symbols STRINGS(25, "A"}
using first character STRINGS(5,CS$)
of char.

VAL(string) Returns a numeric vz corresponding VAL(" 1" +AS+".""+C$)
to a numeric-valued string. VAL[AS+BS)

VAL(G1S)

*string may be a string variable, expression. or constant.

.~ e .

A2

Arithmetic Functions*

Function Operation (unless noted otherwise, Examples
~1.7E+38<=exp<=1.7E+38)
ABS(exp) Returns absolute value. ABS(L*.7)
ABS(SIN(X])
ATN(exp) Rzturns arctangent in radians. ATN(2.7)
ATN{A*3)
CDBL(exp) Returns double-przcision representa- coBL{A)
tion of exp. CDBL[A+1/32)
CINT(exp) Returns largest integer not greater CINT(A=+B)
than exp. Limits:
-32768 <= cxp<+32768.
COS(exp) Returns the cosine of exp, assumes COS(2*A)
exp is in radians. COS{A/57.29578)
CSNGlexp) Returns je-precision representation, CSNG(A =)
with 5/4 rounding in least significant CSNG{.33"8=)
decimal when exp is double-precision.
EXPrexp) Returns the natural exponential, EXP(34.5)
< €XP =EXPlexp). EXP(A*B*C-1)
FIX(exp) Returns the integer equivalent to FIX(A-B)
truncated exp (fractional part of exp
15 chopped ofn.
INT(exp) Rzturns largest integer not greater INT{A+B*C)
than exn.
LOG(exp) Returns natural logarithm (base ¢) LOG(12.33)
of exp. Limits: exp must be positive. LOG(A } B+B)
RND(0) Returns a pseuda-random number RND(0)
between 0.000001 and 0.999999
inclusive.
RND(exp) Returns a pseudo-random number RND(40)
between | and INT(exp) inclusive. RND[A+B)
Limits: 1 2768.
SGN(exp) Returns -1 for negative exp: 0 for SGN(A*B+3)

*exp is any numeric-val

zero exn: +1 for positive exp.

SGN(CcOs(X})

SIN(exp) Retut :s the sine of XD, ASSUINSS CXD
isin {1

5.

S S |

SIN(A,B)
SIN(90/57.29578)

SQR(exp) Retufas - re root ol evp SQR(A*A -8+8)
exp st 1-nezative.
TAN(exp) nt of exp; assume TAN(X)
TAN(X*.0174533)
Special Functions
Function Operation and Limits Examples
ERL Returns linz number of current error. ERL
ERR Returns a value related to cu ERR/2+1
code (if error has occurred).
(error codz-1)*2. Also: (ERR/2)+1 =
error code.
INP(port) Inputs and returns the current value INP{55)
from th fied port. Both arzgument
and result are in the range 0 to 255
inclusive.
MEM Returns tetal unused and unprotected MEM

bytes in memory.

PEEK(locarion) Returns vilue stored in the specified
memory location must be a valid
memory 2ddress in decimal fenn (see
Memory Map in Appendix D).

POINT (x.») Checks the graphics block specifiad by
horizontal coordinate x und verucal
coordinate y. If block is “on™. returns a
True (- 1), if block is “off™", retums a
False (21, Limuts: 0<=x <1250<=y<43.

POS(0) dicating the cur-
position. T ent
“0™ is a Sumiy variable.
USR(n) Branches to machine lanwuage sub-

routine, For LEVEL Il BASIC, n must
equal 0. See Chapter 3

VARPTR(xar) Returns address where the spec

PEEK({15370)

POS{0)

USR(0)

VARPTRIAS)

vari 12, value, and po VARPTR(NI]
stored. .27 must be a valid vanable name.
Returns Uaf var has not been assigned a
value.
-y v wbacuver vt b —

All4

B e

LEVEL II Reserved Words*
@ FIX
ABS FOR
AND FRE
ASC GET
ATN GOSUB
CDBL GOTO
CHRS IF
CINT INKEYS
CLEAR INP
CLOSE INPUT
CLS INSTR
CMD INT
CONT KILL
Cos LEFTS
CSNG LET
CvD LSET
cvI LEN
Cvs LINE
DATA LIST
DEFDBL LOAD
DEFFN Loc
DEFINT LOF
DEFSNG LOG
DEFUSR MEM
DEFSTR MERGE
DELETE MID$
DIM MKDS
EDIT MKIS
ELSE MKSS
END NAME
ERL NEW
ERR NEXT
ERROR NOT
EXP ON
FIELD OPEN

* Many of these words have no function in LEVEL I1 BASIC; they are
reserved for use in LEVEL 11 DISK BASIC. None of these words can

be used inside a variable name.

1y e i

A5

H B |
Progeam Limits and Memory Overhead
Ranges
Integers -32768 to +32767 inclusive
Single Precision —1.701411E+38 to +1.701411E+38 inclusive
Double Precision —1.7014118343544556E+33 to +1.701411334544556E+38 inclusive
String Range: Up to 255 characters
Line Numbers Allowed: 0 to 65529 inclusive
Program Line Length: Up to 255 characters
Memory Overhead
Program lines require 5 bytes minimum, as follows:
Line Number — 2 bytes
Line Pointer ~ 2 bytes
Carriage Retumn - | byte
In addition, cach reserved word, operator, variable name, special character and constant
character requires one byte.
Dynamic (RUN-time) Memory Allocation
Integer variables: 5 bytes each
(2 for value, 3 for variable name)
Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)
Double-precision variables: 11 bytes each
(8 for value, 3 for variable name)
String variables: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, 1 for each character)
Array variables: 12 bytes minimum
(3 for variable name, 2 for size, 1 for number of dimensions,
2 for each dimension, and 2, 3, 4 or 8 [depending on array type]
for each ¢lement in the array)
Each active FOR-NEXT loop requires 16 bytes.
Each active (non-returned) GOSUB requires 6 bytes.
Each level of parentheses requires 4 bytes plus 12 bytes for each témporary value.
|

A/16

B/LEVEL 11 Error Codes

CODE ABBREVIATION ERROR
1 NF NEXT without FOR
2 SN Syntax error
3 RG Return without GOSUB
4 oD Out of data
5 FC Tilegal function call
6 ov Overflow
7 oM Out of memory
8 UL Undefined line
9 BS Subscript out of range
10 DD Redimensioned array
11 /0 Division by zero
12 1D [legal direct
13 ™ Type mismatch
14 os Qut of string space
15 LS String too long
16 ST String formula too complex
17 CN Can’t continue
18 NR NO RESUME
19 RW RESUME without error
20 CE Unprintable error
21 MO Missing operand
22 FD Bad file data
23 L3 Disk BASIC oriy®

B/1

Explanation of Error Messages

NF

NEXT without FOR: NEXT is used without a matching FOR statement. This error
may also occur if NEXT variable statements are reversed in a nested loop.

SN Syntax Error: This usually is the result of incorrect punctuation, open parenthesis,
an illegal character ora mis-spellcd command.

RG RETURN without GOSUB: A RETURN statement was encountered before a
matching GOSUB was executed.

OD Outof Data. A READ or INPUT # statement was executed with insufficient data
available. DATA statement may have been left out or all data may have been read
from tape or DATA.

FC Tilegal Function Call: An attempt was made to execute an operation using an lllezal
parameter. Examples: square root of a negative ary gative matrix di
negative or zero LOG arguments, etc. Or USR call without first POKEing the entry
point.

OV Overflow: A value input or derived is too large or small for the computer to handle.

OM Out of Memory: All available memory has been used or reserved. This may occur
with very large matrix dimensions, nested branches such as GOTO, GOSUB, and
FOR-NEXT Loops.

UL Undefined Line: An attempt was made to refer or branch to a non-existent line.

BS Subscript out of Range: An attempt was made to assign a matrix element with a
subscript beyond the DIMensioned range.

DD Redi ioned Array: An pt was made to DiMension a matrix which had
previously been dimensioned by DIM or by default statements. It is 2 good idea to
put all di at the beginning of a progr

/0 Division by Zero: An attempt was made to use a value of zero In the denominator.

D Hlegal Direct: The use of INPUT as a direct command.

TM Type Mismatch: An attempt was made to assign a non-string variable o a string or
vice-versa.

(] Out of String Space: The amount of string space allocated was exceeded.

Ls String Too Long: A string variable was assigned a string value which exceeded 255
characters in length.

ST String Formula Too Complex: A string operation was too complex to handle. Break
up the opertion into shorter steps.

X = : b |

B/2

= NI NI SR 37 0m A PO MYV SAGHCI T N Nk 3PN =7 . T PO TV % V01 G D00 A 5. e

CN Can’t Continue: A CONT was issued at a point where no continuable program exists,
e.g., after program was ENDed or EDITed.

NR No RESUME: End of program reached in error-trapping mode.

RW RESUME without ERROR: A RESUME was encountered before ON ERROR
GOTO was executed.

UE Unprintable Error: An attempt was made to generate an error using an ERROR
statement with an invalid code.

MO Missing Operand: An operation was attempted without providing one of the required
operands.

FD Bad File Data: Data input from an external source (i.c., tape) was not correct or was
in improper sequence, etc.

L3 DISK BASIC only: An attempt was made to use a statement, function or command
which is available only when the TRS-80 Mini Disk is connected via the Expansion
Interface.

R/R

T

C/Control, Graphics, and ASCII Codes

Control Codes: 1-31
Code Function
0-7 None
8 Backspaces and erases

current character

9 None

10-13 Carriage returns

14 Tums on cursor

15 Turns off cursor

16-22 None

23 Converts to 32 character
mode

24 Backspace -+ Cursor

25 Advance = Cursor

26 Downward V¥ linefeed

27 Upward § linefeed

28 return cursor to

display position(0,0)

29 Mo

cursor to b

of lin2
30 Erases to the end of the line
31 Clear to the end of frame

N

ASCII Character Codes 32-128

Code Character Code Character

32 space 76 L

33 ! 77 M

34 =1 73 N

35 = 79 o

36 S, 80 P

37 % 81 Q

38 & 82 R

39 = 83 S

40 Y} 84 T

41 Ve 85 U

42 s 86 v

43 £ 87 w

44 , 88 X

45 - 89 Y

46 . 90 z

47 / 91 bor(

48 V4 92 \

49 i 93 -

50 2 94 -

Sl 3 95 -

52 4 96-127 lower case for

53 5 codes 64-95

54 [128 Space

55 7

56 8

57 9

P : Graphics Codes 129-191

2? You can examine these codes using:
>

g:" ”h 10 FOR X = 129 TO 191

64 @ 20 PRINT X;:PRINT CHRS(X),

65 A 30 NEXT

66 B Space Compression Codes:

67 C

68 D 192 TO 255

69 E Code Function

70 F

n G 192-255 Tabs for 0 TO 63

33 :l spaces, respectively

74 J

75 K

=== b |

Ccn

DECIMAL

12288

14336

15360

16383
16384

16421

14302
14303
14304
14305
14308
14312
14316

16402
16405

16413

I
|

ADD

RESS

HEXIDECIMAL

D/LEVEL II TRS-80 MEMORY MAP

0000

3000

37DE
37DF
37E0
37E)
37E4
37E8
TEC

3FFF
4000

4012
4015

4025

N\
A

LEVEL 11 BASIC ROM

RESERVED

L
T

COMMUNICATION STATUS ADDRESS
COMMUNICATION DATA ADDRESS
INTERRUPT LATCH ADDRESS

DISK DRIVE SELECT LATCH ADDRESS
CASSETTE SELECT LATCH ADDRESS
LINE PRINTER ADDRESS

FLOPPY DISK CONTROLLER ADDRESS

TRS-30 KEYBOARD

MEMORY

TRS-80 CRT

VIDEO MEMORY

ILE\'EL [1 BASIC FIXED RAM J

VECTORS (RST'S | THROUGH 7)

nh

KEYBOARD DEVICE CONTROL BLOCK

DCB + 0=DCBTYPE
DRIVER ADDRESS
RIVER ADDRESS

D
0
0
0

RN

L h b
T T

1
VIDEO DISPLAY CONTROL BLOCK
DCB + 0=DCBTYPE
1 = DRIVER ADDRESS (LSB}
2=DRIVER ADDRESS (MSB)
3 =CURSOR POS N (LSB)
4 = CURSOR POS N (MSB)Y
5 = CURSOR CHARACTER
6="D"

+ 7=
LINE PRINTER CONTROL BLOCK
DCB + 0=DCBTYPE

+ | =DRIVER ADDRESS (15B)

+

+ et

+ 27 DRIVER ADDRLSS (MSB)
+ 3= LINESPAGH

+ 4= LINECOUNTER

+ 5=9

+ 6="P

+ 7="R'

16512

20479 (4K)
32767 (16K)

Stey

41E6
42E7

42E9

4FFF (4K)
7FFF (16K)

RESVRAVED

—— FDCINTE

RUPT VECTOR

I COMMUNICATIONS INTERRUPT VECTOR
RESERVED

25MSEC HEARTBEAT INTERRUPT
RESERVED

LEVEL 11 BASIC RAM

[reserveo

1;0 BUFFER

———— ALWAYS ZERQ

+ PROGRAM TEXT

-

SIMPLE VARIABLES

-

ARRAYS

FREE MEMORY

-

STACK

-

STRING SPACE

SPACE RESERVED FOR MACHINE LANGUAGE
ROUTINES TO BE-ACCESSED FROM BASIC —
1F MEMORY SIZE SET

i

END OF ACTUAL MEMORY

D/2

F/Derived Functions

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPOBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSE! N
HYPERBOLIC COT.
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

Function Expressed in Terms of Level II Basic Functions

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = [/TAN(X)

ARCSIN(X) = ATN(X/SQR(-X*X+1))

ARCCOS(X) = -ATN(X/SQR(-X*X+1))+1.5708
ARCSEC(X) = ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
ARCCSC(X) TN(1/SQR(X*X-1N+SGN(X)-1)*1.5708
ARCCOT(X) = - ATN (X)+1.5708

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X)-EXP(-X))/2

TANH(X) = - EXP(-X)/(EXP(X)+EXP(-X)*2+!
SECH(X) = 2{EXP(X+EXP(-X))

CSCH(X) = 2/(EXP(X)-EXP(-X))

COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+ |

ARGSINH(X) = LOG(X+SQR(X*X+1))
ARGCOSH(X) = LOG(X+SQR(X*X-1))
ARGTANH(X) = LOG((1+X)/(1-X))/2
ARGSECH(X) = LOG((SQR(-X* X+1)+1)/X)
ARGCSCH(X) = LOG((SGN(X)*SQR(X *X+1)+1)/X)

ARGCOTH(X) = LOG((X+1)/(X-1))/2

/1

H/User Program

Space-Ship Lander

This challengi
of four planetary
Before each 10-seco
information:
Elapsed Time (seconds)
Altitude (s)
Velocity (i s'hour —

tive amount m\hmtﬁ motion

simuiate a I"nhng sequence on any
asteroid Vesta.
¢ given the foliowing

Using this i
second). For
the 10-second m
0-100
too g

Hints:

— The up arrow 4
Remem

Good luck, Co

109

BTy X - a0 |

205
206
210

270

PRINT@ @, “ELAPSED ALTITUDE VELOCITY FEHAINING INFUT FUEL®;
PRINT® 64, “TIME KMy CRMAHRY FUEL BURN : (KGA/ZEC)";
PRINT? 128+Q , T1; TABC1@> N3; TABC24> BZL TRE(SH N4, TABIS3) ,: INPUT F

IF F=0 GOTO 288

IF F<CB OR F>109 GOTO 220

T = N&/F : IF TC18 THEN B4aT

N4 = N4 - (FeB4)

Yi=83

Ti=T1+84

BS = (G2+ ((G2 & N3)/(RT * -2))) = ((F » GSI/(A3 + N4
83 = B2 + (BJ » B4)

3
N3 = N3+ (((B3 + B2) 7/ A1) * B4
B2=B3
IF N3<8 GOTO 4%@
IF N4 <= 9 GOTO 400 : GOTO 210
Q=0+64 . IF Q + 128 > 960 THEN Q=832
GOTO 205
PRINT * -=>> ILLEGAL FUEL BURN - DUMMY!--TRY RGAIN (O TO 100> : GOTO 24
¥2 = SOR (B2[2 + N3 # G2 » S65@> : PRINT "OUT OF FUEL AT"; T1 ;“SECONDS"
V3 = ABS(V2) + 10008 / 3569
TL = TL + LOG <(V3 » N3 » 1900@) / G1)
GOTO 1000
Y2 = SOR (ABS (NS / (26 » BS))>) + (26 » BS) + vi : GOTO 1009
Ti=T1-(18-84)
Gl = 980.7 : AS = 6371 : AS="EARTH" : GOTO14S
Gl = 162 : AS = 1733 : AS="MOON" : GOTO 145
Gl = 324 . AS = 3388 : AS="MARS" : GOTO 145
Gl = 17.5 : A5 = 195 - AS="YESTA® : GOTO 145

1000 PRINT : PRINT “YOU HAVE “.

1040 IF v2(2® PRINT “LANOED" . GOTO 1160

1028 IF v2{100 PRINT "CPASHED“ : GOTO 1148

1030 IF V2<2S0 PRINT "BEEN OBLITURATED" : GOTO 5000

1040 IF v2<5000 PRINT "MACE A NEW CRATER" . GOTO S008

1950 IF V24999 PRINT "BURED A HOLE INTO THE PLRNET* . GOTO 50@9
1109 IF va<1 PRINT “NICE TOUCH--YERY GOOD" ' GOTO S@ee

1110 IF v2<S PRINT "NOT TOO BRO" : GOTO 3900

1120 PRINT "KIND OF ROUGH" : GOTO Seoe

1149 IF v2(39 PRINT "YOU WILL NOT BE ABLE TO TAKE OFF" : GOTO 5009
1158 IF ¥2<45 PRINT "vOU ARE INJURED, THE LANDER IS ON FIRE" : GOTO 5008
11606 PRINT "THERE ARE NO SURVIVCRS“

5000 PRINT “VELOCITY AY IMPACT « » »* TR8(40), ABS(V2) ., "KM/ HR™
35019 FRINT “"ELAPSED TIME « & « # » +" TAB(4Q); Ti , “SECONDS"

Se20 END

Customer Information

This program allows you (or your customers) to store information in

a file for future reference. It stores Name, Address and Phone Numbet;
the file can be recatled, modified, etc., by specifying the desired

action using the ““Menu” (Table of Commands).

T ‘ - w |

H/2

T . bl T ORI

This would be a handy way to create a mailing/phone list.

48 CLEAR 1008 :CLS :DIM NS(.’)O) NH M(S@) DIH P$¢50)
28 CLS :PRINT® 10, "+ = MENU « :PRINT
30 PRINT "TO BUILD R FILE TYPE 1
4@ PRINT "T0- SEE THE ENTIRE FILE TYPE 2
58 PRINT "TO SEE AN INDIVIDUAL NAME TYPE 3
60 PRINT "TO MAKE CORRECTIONS TYPE 4
78 PRINT “TO SAVE THE CURRENT FILE ON TAPE TYPE S
68 PRINT "TO INPUT A FILE FROM TAPE TYPE 6
90 INPUT @ :ON Q GOTO 108, 200, 300, 490, 520, 600
100 INPUT"WHEN READY. MIT ENTER (TO CLOSE THE FILE TYPE 9999 FOR NAME)";X
‘148 FOR I=1 7O S@ :CLS :PRINT"ENTER VOUR NRME CLAST FIRST, NO COMMAS PLERSE)
142 PRINT"THEN HIT THE ‘ENTER’ KEY" ; : INPUT N$CI)
415 IF N$C1)="9999" THEN Pi=1 :GOTO130
120 INPUT"ENTER YOUR RDORESS (NO COMMAS)"; A$CI)
130 INPUT"ENTER YOUR PHONE & °; PSCI>
435 IF FRECXS) < 100 GOTO138
140 NEXT
159 PRINT"FILE CLOSED —* :INPUT"TO SEE THE MENU, HIT ENTER™) X
160 G0T020
200 CLS :FOR 1=1 TO P1 :PRINT NCID, ACI), P$C1)> NEXT
210 INPUYT*TO SEE THE MENU, HIT ENTER™ X :GOT020
300 CLS :INPUT"ENTER THE NAME, LAST FIRST (NO COMMAS)™; N$
340 FOR 1=1 TO P1 :IF R$CID=N$ THEN320
343 NEXT
320 PRINT"NAME NOT IN FILE" :G0TO348
330 PRINT N$C(I), ASCI), Ps<I>
340 PRINT :PRINT"FOR ANOTHER NAME TYPE 1, OTHERWISE @"; :INPUT X
359 IF X=1 GOTO39Q ELSE20
480 CLS :PRINT*ENTER THE NAME FOR THE LINE YOU WISH TO CHANGE (NO COMMAS)"
485 INPUT NS
410 FOR I=1 TO P1 - IF NS=N$(I) GOT0430
415 NEXT
420 PRINT"NAME NOT IN FILE® :GOTD460
438 PRINT"ENTER THE CORRECTED INFO. : NAME, ADDRESS, PHONE®
440 INPUT N$CE), RSCID, PSCDD
450 PRINT"THE LINE NOW READS :™ :PRINT N$(I), ASCI), PSCI>
469 INPUT"FOR ANOTHER CORRECTION TYPE 1, OTHERWISE 8" X
470 IF X=4 GOT0420
480 GOTO029
580 CLS :INPUT "MAKE PREPARRTIONS FOR CASSETTE, WHEN RERDY HIT ENTER"; X
910 PRINT"COPYING. .. *
8520 PRINT #-1. P1
538 FOR I=1 TO P1 :PRINT #-1, N$CI), RSCI), P$CI) :NEXT
540 PRINT"COMPLETE —— NOTE TR®S LOCATION"
S50 INPUT"TO SEE THE MENU. HIT ENTER"; X :G0TO2@
680 CLS :INPUT"WHEN READY, HIT ENTER"; X
616 PRINTUINPUTING ...
820 INPUT #-4. P1
638 FOR I=1 TO P1 :INPUT #-1, NSCI), ASCI), P$CI) :NEXT
640 PRINT"COMPLETE":INPUT"TO SEE MENU, HIT ENTER"; X :GOTO20

(might be good tor izt
in this printout.)
18 CLS

189 FRINT"THIS F
113 PRINT"GIVEN 3
120 PRINT PRINT“FIF 2
130 PRINT"FCR 1 SILE AN
140 ™PUT AS IF RIS
158 IF AS="RSA" ! 2
229 '3555

210 PRINT"ENTER 2 SILES. (LONGEST SIDE FIRST).

229 [NPUT L1, L2, L2

225 IF L22L1 OR L32LL PRINT "« « & LUNGEST FIRST PLEASE "
23@ S=(L1-L2+L30/2

235 IF 5 <= L1 F “ e # « NCT A TRIA
240 ¥3 = 2 « SGRC S « (5-L2) * (5-L1) + (3-L3» /L4
299 A = ¥Y3/L2 (A = ATNC A / SORC-R * R+1))

260 X3 = COSCRY » L2

270 AR = ‘L1 « ¥3) /2

280 GOTOSCO

309 ‘SRS

€ TYFE

FRINT

SRS,

3072 218

£« s 0" PRINT GOTO 213

310 PRINT“ENTER 2 SIDES AND 1 ANGLE: AB, AC, THETAR:(LRRGEST SIDE FIRST)

320 INPUT LL, L2, T

325 T = (T « 3 14193 / 139

33OV = L2 « SINKT)

249 X2 = COSKTY * L2

350 AR = (L1 = ¥3) /2

360 GOTGSRd

4299 ‘ASA

413 PRINT“ENTEP 2 ~NOLES FRND & SICE. THETAL, ThETA2, RB:
420 INPUT T1, T2, L2

425 TL = (T4 « 3 14159) /7 189 @ T2 = (T2 » 3 14159 / 189
430 ¥3 = L2 « SINCTL)

448 B1L = COSCTL) « L2

450 B2 = v3 / TRN(TZ)

LL = BL + B2 X3 = B1

AR = (L2 » ¥I) / 2

LS F=2

Vo= 2

S3 THEN 8700
(Y3 « F) 2y /3
(Y3« F)L2) 73 : ¥T =V + VS

2=Y¥3 / €43 = L)

D oeS
« (L1-4) 4SS0
@ TagLL)

FGQR < ET
FRINT@ €4 % INTL/92+35) / 2)

600 PRINTE (X3 + 20) /2, *C (" X3 *F %" B *F ",

640 PRINT® 832, "ARER ="; AR ;" SQ UNITS® ;

628 PRINT@ 896, “THE VOLUME OF THE SOLID CREATED BY REVOLVING THE TRIANGLE *;
625 PRINT"ABOUT THE X AXIS (LINE ABY =*; VT; "CUBIC UNITS";

630 PRINT@ 768, “»* ;: INPUT "TO RUN RGAIN. TYPE 1" B6 : IF B6=1 THEN1® -
648 STOP : QOTOi@

700 IF L1<100 THEN F=2 : GOTO750

718 IF L1<i58 THEN F«3 : GOTO7S8

720 IF L1<200 THEN F=4 : GOT0730

739 IF L1<250 THEN F=8 : GOTO?39

740 PRINT "SORRY, SCALE TOO LARGE YO BE DRAWN" ; : F=6 : GOTO0S10

750 Lisla/F @ YASYA/F © Y2=Y/F : Y3=V3I/F © RisR4F : W + XK3nK3/F
762 RETURN

1900 FOR V=3 TO Y345 : SET(XJ‘ZON.V) NEXT : GOTOS4@
1100 FOR V=5 _T0 V3+5.: SETC20 , V) : NEXT : GOTOS40
m!me 5

41200 FOR X=L1 70 X3 : SETKN * 2 + 20 , V3 ¢ (S2 ® CL4-X) +8)) : NEXT : 0OTOS4@
1299 IF X3 < ~1@ GOSUB700

4300 FOR X=X3 T0 @ : SET(X % 2 + 20 , Y3+ (S4 & (B-X)> +5)) : NEXT : GOTO34@

Target'Practice

This program uses the INKEY'$ function to simulate one of the
popular “video games™. Notice how few lines are required. This
program could easily be ““dressed up” — let the user choose a

Fast Target, Slow Target; keep score, print special messages, etc.
To change the speed of the target, change line 40 as follows:
instead of “RND(10)/10”, use “RND(0)*S1". For a slow-moving
target, let S| be smali (less than 1); for a faster target, let S1 be
greater than 1. S] should not exceed 1.5 or the target will advance
to the next line.

4 CLS:PRINT : PRINT CHR$(23) ; "HIT ‘2’ KEY TO RIM LEFT."

2 PRINT "HIT ‘/° KEY TO AIM RIGHT. =

3 PRINT “HIT SPRCE BAR TO FIRE. "

4 FOR I = 1 TO 5008 - NEXT

48 CLS : CR=928 : I=1 : PRINT @ CA, "=" ; : PRINT @ 991, "s#a";
20 F=0

30 IF 1 >= 13 PRINT @ 124, * o I=t

4O PRINT 2 64 ¢+ 1 * 4, ") : I=I+RNDC18)/10 : PRINT® 64+1%4, " - *;
S0 IF F=@ THEN 200

60 PESET(MX, MY)> : MXsMX-MD : My=MY-8 : IF MXC=@ OR MO=127 THEN2O

78 IF MY>2 SET(MX.MV)> : GOTQ 30

80 IF ABSC I48~-MX)>4 THEN 20

-9 FOR J=i TO € : PRINT® 64+4x], "sawa®; : FOR K=i TO 30 : NEXT
93 PRINT® 64+4=1, * " : FOR X=1 TO S@ : NEXT K,J

100 GOTOLd

200 VS=INKEYS

203 IF F=1 STOP

219 IF y3{O 2" THEN 2%9

e rrorssremamsars e . v rwioo vt |

[sy - - T IR SRS ool |

220 1F CR < 922 THEN 38

238 PRINT® CR. - *;. : CR=CA-1-:-GOTO 280
250 IF v$O"/° THEN 309

260 IF CA>334 THEN 20

270 PRINT® CA, “ " : CR=CA+i

288 PRINT@ CAR, "»*; : GOTO3Q

308 IF Y$O" " THEN 38

318 F=i : MO=928-CA : My=40 : MX=64-3+MD : SET(MX.MY) : GOTO3@
311 END

Ready-Aim-Fire (Bouncing Dot Revisited)

Remember the LEVEL [B ing Dot program? This takes
that idea and turns it into a game for one or more players by means
of the INKEYS function. The object is to enter the correct 3-digit
combination that will cause your missile to destroy the bouncing
dot. (The 3-digit number corresponds to the X-axis of the display
and therefore should be in the range 001 to 126 — and be sure to
enter leading zeros for 1- or 2-digit numbers.)

The Computer always takes the first shot; then it’s Player Number

1’s turn.

S DIM NS(4)

6 CLS : INPUT "ENTER THE NO. OF PLAYERS"; X1 : PRINT®ENTER"; X1 ; "iST NAMES :*
7 FOR XI=4 TO X4 : INPUT NSCXID : NEXT : XI=i

10 QS

20 FOR Mx0 TO 127 : SET(M.@) : SET(M.47) : NEXT

30 FOR M=0 TO 47 : SETCB,M) : SET(127.M)> : NEXT

OR

35 FOR X=i TO 121 STEP 10 : RESET(X, @) : NEXT
RANDOM @ Y= RHND(49) +1 : X= RND(110) +4

S0 D=1 : Q=1 : Z=64

68 RESET (Z,¥-D) : RESET (X- Q * 4, 24)

78 SET(2,¥) : SET(X, 24> : GOSUB 500

80 Y=Y+D : XsX+Q

98 IF ¥=123 OR X=4 THEN GOSUB 708

100 IF '4=47 THEN 120

105 IF Y= GOSUB 900

110 IF ¥ O -1 OR X < -1 THEN 60

120 Ya ¥- 2 « D : D= -D : GOTO 69

S00 IF Xs2Z OR XeG+Z QR X=2 + Q+Z OR X=3 # G+Z OR X=Q » 4+2 THEN IF Ya24 GOSUB 600

510 IF ¥=23 OR V=24 OR Y=25 THEN IF Xs2 GOSUB 600

320 FETURN

608 X=1

648 FOR Z=1 TO 50 : PRINT® S50, "HIT !!!*; : NEXT
620 FOR 2=1 TO 25 : FRINT@ S50, " * 51 NEXT
638 X=X+1 : IF <3 GOTQ 610

640 GOTO 2000

700 X=X-2 » @ : @= -Q : RETURN

900 T$ = INKEVS : A$ = " : B$ = "% : C$ = **
1000 As= INKEYS : IF LENCRS) = @ THEN 1000
1083 PRINTS 8, AS:

513 AIAT w b v L B T 1194 127 ASIP O IF - SRITIRE AR AL SRR

H/6

ie10
1915
1020
1025
pU-xC]
1933
1033
1840
1190

1110

2000
2019
2017
2020
2030
2935
2040
2042
2045
2050
2060
2BES
2070
2115
3060

B$= INKEVS : IF LENCB$)=0 THEN 1010

PRINT@ L, BS;

Cs= INKEYS : IF LENCC$)=0 THEN 1020

PRINTE 2, C$;

RESET(Z. 1) : X$= AS+BS+CS : Z=VAL(XS) : IF 2126 GOTO 1109
PR=PReL

GOTO129

RETUPN

FOR %=1 70 5@ : PRINT@ 78, "TOO LARGE. TRY AGRIN® : NEXT
FRINT® 70, * * : 2=i : GOTO 1000

IF PX=0 GOSUB 3000

CLS : PRINT * w % % " NSCRID ;® & = »* : PRINT : PRINT
PXCKI) = PX+PR(KI> : PHCXI) = PHCXID+L

PRINT, "SHOTS HITS PERCENTAGE"

PRINT : PRINT "THIS ROUND *; TAB(17) PX; TAB(28)"1"; TAB(42) (1/PX) = 100
IFPX(1)=ATHENPX(1)=1

PRINT : PRINT "TOTAL 5 TABCL?) PXCXID);

PRINT TRB(29) PH(XD)s TABC42) CPHCXI) / PX(XID) » 100

FOR X=1 TO 2500 : NEXT

RI=XI+1

IF XIDXL THEN XI=1

PX=@

GOT0108

IF PX=@ GOSUB 3909

PRINT@ 8, “MWHAT LUCK ''!'" : PX=i : RETURN

H/7

Things You Sheuld Xnow —
LEVEL II TRS-80

>

After executing an INPUT #-g (input from cassette), some
TRS-80s.will not READ properly from DATA statements.
Instead a RESTORE will automatically be performed before
each READ, so that only first DATA item will be read.

1f your TRS-80 operates this way (depends on a few IC’s from

one supplier), there is a simple fix. Insert the statement,
POKE 16553,255

immediately after every INPUT #-z statement.

A PRINT#-1 statement can put no more than 248 bytes on
the tape. If you have 2 lengthy PRINT # list, only the first

248 bytes will be saved on tape; the rest will be lost. Therefore
you should break up such lists into two or more PRINT#
statements.

Ifyouhave an E jon Interface d and you need
to Reset the Computer, hold down the BREAK key and press
Reset. This will return you to the MEMORY SIZE question.
Any BASIC program in memory will be lost by this Reset
sequence.

1f you stop a2 BASIC program during execution, and then aiter
the program itself, all variables will be reset to zero. You will
not be able to continue execution where you left off. RUN it
again. Note: If a syntax error is encountered and BASIC puts
you in the Edit mode, type Q(o return to the Command mode.
‘You can then examine variable values, if you wish, before fixing
the syntax error.

If you attempt to execute an LPRINT or an LLIST when a line
printer is not connected (or is turned off), the computer will
“freeze up™, Either turn on the line printer, or, if one is not
connected, Reset the Computer (see 3 above).

All the built-in mathematical functions in LEVEL 11 BASIC
return single-precision results (6-7 digits of accuracy). Trig
functions use or return radians, not degrees. A radian-degree
conversion is given in the LEVEL 11 Reference Manual.

7. MHird-to-find program errors:

Shift characters arc not always interchangeable with their
unshifted counterparts. For example, PRINTE will not
work if you use a shifted @, even though it will look ok
on the screen. If you can't find anything wrong with a
line which causes a syntax error message, try retyping the
line, watching out for the shift key.

Spaces arc sometimes important in LEVEL 11 BASIC, The
following line is incorrect:

IFD< 0D=0

because OD is interpreted to mean ‘“‘double-precision
zero™,

Change it to:

1FD< 0 THEN D=0

8. To use the CLOAD? with cassette #2, use this format:
CLOAD#-2,2"filename™

9. Ifyou fi ly get “double-entries™ when pressing a particular
key, remove the plastic key cap, and carefully clean the contacts,
using a stifl piece of paper. Insert the paper between the
contacts, press the key down to pinch the paper, and pull the
paper out while the contacts are pinching it.

10, If you have other questions regarding operation of your
‘TRS-80, call Customer Service, (817) 390-3583, or write:
TRS-80 Customer Service
Radio Shack
P. O. Box 185
Fort Worth, TX 76102

11, The maximum TAB for an LPRINT statement in 63. The Line
Printer won't tab past column 63. There’s a simple way around
this limitation, using the STRINGS function to simulate tabs
past column 63.
Example:
LPRINT TAB(S)"NAME"TAB(30)"ADDRESS"'STRING$(63,32) "BALANCE"

will print “NAME™ at column 5, “ADDRESS" at column 30,
and “BALANCE™ at column 100.

